Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Pharm ; 21(7): 3240-3255, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785196

RESUMO

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.


Assuntos
Neoplasias Colorretais , Irinotecano , Micelas , Inibidores da Topoisomerase I , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Irinotecano/farmacologia , Irinotecano/administração & dosagem , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/administração & dosagem , Inibidores da Topoisomerase I/química , Linhagem Celular Tumoral , Animais , Camundongos , Nanomedicina/métodos , Sinergismo Farmacológico , DNA Topoisomerases Tipo I/metabolismo , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Poliésteres/química , Fosfotransferases (Aceptor do Grupo Álcool) , Enzimas Reparadoras do DNA
3.
Mol Genet Genomic Med ; 12(1): e2295, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916443

RESUMO

BACKGROUND: Microcephaly with early-onset seizures (MCSZ) is a neurodevelopmental disorder caused by pathogenic variants in the DNA strand break repair protein, polynucleotide kinase 3'-phosphatase (PNKP). METHODS: We have used whole genome sequencing and Sanger sequencing to identify disease-causing variants, followed by a minigene assay, Western blotting, alkaline comet assay, γH2AX, and ADP-ribose immunofluorescence. RESULTS: Here, we describe a patient with compound heterozygous variants in PNKP, including a missense variant in the DNA phosphatase domain (T323M) and a novel splice acceptor site variant within the DNA kinase domain that we show leads to exon skipping. We show that primary fibroblasts derived from the patient exhibit greatly reduced levels of PNKP protein and reduced rates of DNA single-strand break repair, confirming that the mutated PNKP alleles are dysfunctional. CONCLUSION: The data presented show that the detected compound heterozygous variants result in reduced levels of PNKP protein, which affect the repair of both oxidative and TOP1-induced single-strand breaks, and most likely causes MCSZ in this patient.


Assuntos
Enzimas Reparadoras do DNA , Microcefalia , Humanos , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Microcefalia/genética , Microcefalia/patologia , Mutação , Convulsões/genética , DNA , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
4.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762489

RESUMO

Base excision repair (BER) corrects forms of oxidative, deamination, alkylation, and abasic single-base damage that appear to have minimal effects on the helix. Since its discovery in 1974, the field has grown in several facets: mechanisms, biology and physiology, understanding deficiencies and human disease, and using BER genes as potential inhibitory targets to develop therapeutics. Within its segregation of short nucleotide (SN-) and long patch (LP-), there are currently six known global mechanisms, with emerging work in transcription- and replication-associated BER. Knockouts (KOs) of BER genes in mouse models showed that single glycosylase knockout had minimal phenotypic impact, but the effects were clearly seen in double knockouts. However, KOs of downstream enzymes showed critical impact on the health and survival of mice. BER gene deficiency contributes to cancer, inflammation, aging, and neurodegenerative disorders. Medicinal targets are being developed for single or combinatorial therapies, but only PARP and APE1 have yet to reach the clinical stage.


Assuntos
Medicina , Humanos , Animais , Camundongos , Camundongos Knockout , Envelhecimento , Reparo do DNA , Biologia
5.
Methods Mol Biol ; 2701: 39-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574474

RESUMO

Endogenous and exogenous genotoxic agents can generate various types of non-ligatable DNA ends at the site of strand break in the mammalian genome. If not repaired, such lesions will impede transcription and replication and can lead to various cellular pathologies. Among various "dirty" DNA ends, 3'-phosphate is one of the most abundant lesions generated in the mammalian cells. Polynucleotide kinase 3'-phosphatase (PNKP) is the major DNA end-processing enzyme for resolving 3'-phosphate termini in the mammalian cells, and thus, it is involved in DNA base excision repair (BER), single-strand break repair, and classical nonhomologous end joining (C-NHEJ)-mediated DNA double-strand break (DSB) repair. The 3'-OH ends generated following PNKP-mediated processing of 3'-P are utilized by a DNA polymerase to fill in the gap, and subsequently, the nick is sealed by a DNA ligase to complete the repair process. Here we describe two novel assay systems to detect phosphate release by PNKP's 3'-phosphatase activity and PNKP-mediated in vitro single-strand break repair with minimal repair components (PNKP, DNA polymerase, and DNA ligase) using either purified proteins or cell-free nuclear extracts from mammalian cells/tissues. These assays are highly reproducible and sensitive, and the researchers would be able to detect any significant difference in PNKP's 3'-phosphatase activity as well as PNKP-mediated single-strand break repair activity in diseased mammalian cells/tissues vs normal healthy controls.


Assuntos
Enzimas Reparadoras do DNA , Radioatividade , Animais , Enzimas Reparadoras do DNA/genética , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Reparo do DNA , DNA Ligases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/genética , Fosfatos , Monoéster Fosfórico Hidrolases/metabolismo , Mamíferos/genética
6.
J Biol Chem ; 299(5): 104714, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37061005

RESUMO

Polynucleotide kinase 3'-phosphatase (PNKP), an essential DNA end-processing enzyme in mammals with 3'-phosphatase and 5'-kinase activities, plays a pivotal role in multiple DNA repair pathways. Its functional deficiency has been etiologically linked to various neurological disorders. Recent reports have shown that mutation at a conserved glutamine (Gln) in PNKP leads to late-onset ataxia with oculomotor apraxia type 4 (AOA4) in humans and embryonic lethality in pigs. However, the molecular mechanism underlying such phenotypes remains elusive. Here, we report that the enzymatic activities of the mutant versus WT PNKP are comparable; however, cells expressing mutant PNKP and peripheral blood mononuclear cells (PBMCs) of AOA4 patients showed a significant amount of DNA double-strand break accumulation and consequent activation of the DNA damage response. Further investigation revealed that the nuclear localization of mutant PNKP is severely abrogated, and the mutant proteins remain primarily in the cytoplasm. Western blot analysis of AOA4 patient-derived PBMCs also revealed the presence of mutated PNKP predominantly in the cytoplasm. To understand the molecular determinants, we identified that mutation at a conserved Gln residue impedes the interaction of PNKP with importin alpha but not with importin beta, two highly conserved proteins that mediate the import of proteins from the cytoplasm into the nucleus. Collectively, our data suggest that the absence of PNKP in the nucleus leads to constant activation of the DNA damage response due to persistent accumulation of double-strand breaks in the mutant cells, triggering death of vulnerable brain cells-a potential cause of neurodegeneration in AOA4 patients.


Assuntos
Enzimas Reparadoras do DNA , Leucócitos Mononucleares , Fosfotransferases (Aceptor do Grupo Álcool) , Ataxias Espinocerebelares , Humanos , DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ataxias Espinocerebelares/genética
7.
Molecules ; 27(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558152

RESUMO

Sensitive detection methods for T4 polynucleotide kinase/phosphatase (T4 PNKPP) are urgently required to obtain information on malignancy and thereby to provide better guidance in PNKP-related diagnostics and drug screening. Although the CRISPR/Cas12a system shows great promise in DNA-based signal amplification protocols, its guide RNAs with small molecular weight often suffer nuclease degradation during storage and utilization, resulting in reduced activation efficiency. Herein, we proposed a self-supplying guide RNA-mediated CRISPR/Cas12a system for the sensitive detection of T4 PNKP in cancer cells, in which multiple copies of guide RNA were generated by in situ transcription. In this assay, T4 PNKP was chosen as a model, and a dsDNA probe with T7 promoter region and the transcription region of guide RNA were involved. Under the action of T4 PNKP, the 5'-hydroxyl group of the dsDNA probe was converted to a phosphate group, which can be recognized and digested by Lambda Exo, resulting in dsDNA hydrolysis. The transcription template was destroyed, which resulted in the failure to generate guide RNA by the transcription pathway. Therefore, the CRISPR/Cas12a system could not be activated to effectively cleavage the F-Q-reporter, and the fluorescence signal was turned off. In the absence of T4 PNKP, the 5'-hydroxyl group of the substrate DNA cannot be digested by Lambda Exo. The intact dsDNA acts as the transcription template to generate a large amount of guide RNA. Finally, the formed Cas12a/gRNA complex triggered the reverse cleavage of Cas12a on the F-Q-reporter, resulting in a "turn-on" fluorescence signal. This strategy displayed sharp sensitivity of T4 PNKP with the limit of detection (LOD) down to 0.0017 mU/mL, which was mainly due to the multiple regulation effect of transcription amplification. In our system, the dsDNA simultaneously serves as the T4 PNKP substrate, transcription template, and Lambda Exo substrate, avoiding the need for multiple probe designs and saving costs. By integrating the target recognition, Lambda Exo activity, and trans-cleavage activity of Cas12a, CRISPR/Cas12a catalyzed the cleavage of fluorescent-labeled short-stranded DNA probes and enabled synergetic signal amplification for sensitive T4 PNKP detection. Furthermore, the T4 PNKP in cancer cells has been evaluated as a powerful tool for biomedical research and clinical diagnosis, proving a good practical application capacity.


Assuntos
Sistemas CRISPR-Cas , DNA , Sistemas CRISPR-Cas/genética , DNA/genética , DNA/química , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Sondas de DNA/química , Corantes Fluorescentes/química , RNA
8.
J Virol ; 96(9): e0033322, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35412344

RESUMO

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5'-kinase 3'-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015-2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA , Mitose , Células-Tronco Neurais , Fosfotransferases (Aceptor do Grupo Álcool) , Infecção por Zika virus , Enzimas Reparadoras do DNA/genética , Humanos , Microcefalia/virologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Zika virus , Infecção por Zika virus/patologia
9.
Life Sci ; 295: 120380, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35143825

RESUMO

AIMS: the main purpose of this study was to identify new selective antitumor agents. MAIN METHODS: several hydrazonoyl chlorides (HCs) were synthesized and human tumor cell line viability was determined using the MTT assay. Tumor development was assessed using Ehrlich ascites carcinoma (EAC)-bearing mice. KEY FINDINGS: our results showed that 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride (compound 4; CPD 4) and 2-oxo-2-(phenylamino)-N-(p-tolyl)acetohydrazonoyl chloride (CPD 5) were the most cytotoxic HCs to human cervical tumor HeLa (IC50: 20 and 25 µM for CPD 4 and 5 respectively), breast MCF7 (IC50: 29 and 34 µM for CPD 4 and 5 respectively) and colon HCT116 cancer cells (IC50: 26 and 25 µM for CPD 4 and 5 respectively) with the least cytotoxicity to human non-tumor CCD-18Co colon fibroblasts as well as murine splenocytes. The active compounds significantly inhibited colony formation as well as tumor development in EAC-bearing mice. We also observed that PTEN-deficient cells displayed greater sensitivity than cells expressing wild type PTEN. At the molecular level, comet and cell cycle analyses indicated that the active compounds generate DNA damage. In light of the PTEN-dependent sensitivity and genomic instability we examined the influence of HCs on the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) and the PI3K/AKT/mTOR pathway, which are each known to be synthetic lethal with PTEN. We found that both PNKP and the PI3K/AKT/mTOR pathway to be adversely affected by the HCs, which may partially account for their toxicity. SIGNIFICANCE: hydrazonoyl chlorides can be considered as hit compounds for the development of new antitumor agents.


Assuntos
Antineoplásicos/síntese química , Hidrazonas/síntese química , Hidrazonas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Cloretos/farmacologia , Enzimas Reparadoras do DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Hidrazonas/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
10.
Pediatr Transplant ; 26(4): e14255, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35187769

RESUMO

BACKGROUND: PNPK gene mutations result in DNA repair disorders and have a spectrum of neurodevelopmental manifestations. To date, cancer predisposition has not been described in patients with PNKP mutations. OBSERVATION: Here, we report a patient with PNKP mutation, who developed AML at age of five and underwent reduced-intensity HSCT. CONCLUSION: Although many DNA repair disorders are known to have increased risk of malignancy, association between PNKP mutations and malignancy is not well-described. This report is the first description of a PNPK mutation patient developing a malignancy and undergoing curative HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Enzimas Reparadoras do DNA/genética , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polinucleotídeo 5'-Hidroxiquinase/genética , Estudos Retrospectivos
11.
Comput Biol Chem ; 94: 107517, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34456161

RESUMO

In recent years, the level of interest has been increased in developing the DNA-repair inhibitors, to enhance the cytotoxic effects in the treatment of cancers. Polynucleotide kinase/phosphatase (PNKP) is a critical human DNA repair enzyme that repairs DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini that are required for subsequent processing by DNA ligases and polymerases. PNKP is the only protein that repairs the 3'-hydroxyl group and 5'-phosphate group, which depicts PNKP as a potential therapeutic target. Besides, PNKP is the only DNA-repair enzyme that contains the 5'-kinase activity, therefore, targeting this kinase domain would motivate the development of novel PNKP-specific inhibitors. However, there are neither crystal structures of human PNKP nor the kinase inhibitors reported so far. Thus, in this present study, a sequential molecular docking-based virtual screening with multiple PNKP conformations integrating homology modeling, molecular dynamics simulation, and binding free energy calculation was developed to discover novel PNKP kinase inhibitors, and the top-scored molecule was finally submitted to molecular dynamics simulation to reveal the binding mechanism between the inhibitor and PNKP. Taken together, the current study could provide some guidance for the molecular docking based-virtual screening of novel PNKP kinase inhibitors.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Polinucleotídeo 5'-Hidroxiquinase/antagonistas & inibidores , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Monoéster Fosfórico Hidrolases/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Conformação Proteica
12.
J Control Release ; 334: 335-352, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33933518

RESUMO

Phosphatase and TENsin homolog deleted on chromosome 10 (PTEN) is a major tumor-suppressor protein that is lost in up to 75% of aggressive colorectal cancers (CRC). The co-depletion of PTEN and a DNA repair protein, polynucleotide kinase 3'-phosphatase (PNKP), has been shown to lead to synthetic lethality in several cancer types including CRC. This finding inspired the development of novel PNKP inhibitors as potential new drugs against PTEN-deficient CRC. Here, we report on the in vitro and in vivo evaluation of a nano-encapsulated potent, but poorly water-soluble lead PNKP inhibitor, A83B4C63, as a new targeted therapeutic for PTEN-deficient CRC. Our data confirmed the binding of A83B4C63, as free or nanoparticle (NP) formulation, to intracellular PNKP using the cellular thermal shift assay (CETSA), in vitro and in vivo. Dose escalating toxicity studies in healthy CD-1 mice, based on measurement of animal weight changes and biochemical blood analysis, revealed the safety of both free and nano-encapsulated A83B4C63, at assessed doses of ≤50 mg/kg. Nano-carriers of A83B4C63 effectively inhibited the growth of HCT116/PTEN-/- xenografts in NIH-III nude mice following intravenous (IV) administration, but not that of wild-type HCT116/PTEN+/+ xenografts. This was in contrast to IV administration of A83B4C63 solubilized with the aid of Cremophor EL: Ethanol (CE), which led to similar tumor growth to that of formulation excipients (NP or CE without drug) or 5% dextrose. This observation was attributed to the higher levels of A83B4C63 delivered to tumor tissue by its NP formulation. Our data provide evidence for the success of NPs of A83B4C63, as novel synthetically lethal nano-therapeutics in the treatment of PTEN-deficient CRC. This research also highlights the potential of successful application of nanomedicine in the drug development process.


Assuntos
Neoplasias Colorretais , Polinucleotídeo 5'-Hidroxiquinase , Animais , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Camundongos Nus , Nanomedicina , PTEN Fosfo-Hidrolase/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores
13.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468657

RESUMO

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , DNA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Inibidoras de STAT Ativados/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Animais , Diferenciação Celular , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Cultura Primária de Células , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transcrição Gênica
14.
Mutat Res ; 822: 111727, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33220551

RESUMO

Polynucleotide kinase phosphatase (PNKP) has dual enzymatic activities as kinase and phosphatase for DNA ends, which are the prerequisite for the ligation, and thus is involved in base excision repair, single-strand break repair and non-homologous end joining for double-strand break (DSB) repair. In this study, we examined mechanisms for the recruitment of PNKP to DNA damage sites by laser micro-irradiation and live-cell imaging analysis using confocal microscope. We show that the forkhead-associated (FHA) domain of PNKP is essential for the recruitment of PNKP to DNA damage sites. Arg35 and Arg48 within the FHA domain are required for interactions with XRCC1 and XRCC4. PNKP R35A/R48A mutant failed to accumulate on the laser track and siRNA-mediated depletion of XRCC1 and/or XRCC4 reduced PNKP accumulation on the laser track, indicating that PNKP is recruited to DNA damage sites via the interactions between its FHA domain and XRCC1 or XRCC4. Furthermore, cells expressing PNKP R35A/R48A mutant exhibited increased sensitivity toward ionizing radiation in association with delayed SSB and DSB repair and genome instability, represented by micronuclei and chromosome bridges. Taken together, these findings revealed the importance of PNKP recruitment to DNA damage sites via its FHA domain for DNA repair and maintenance of genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Instabilidade Genômica , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Substituição de Aminoácidos , Arginina , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HCT116 , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
15.
Front Oncol ; 11: 772920, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004293

RESUMO

Inhibition of the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) increases the sensitivity of cancer cells to DNA damage by ionizing radiation (IR). We have developed a novel inhibitor of PNKP, i.e., A83B4C63, as a potential radio-sensitizer for the treatment of solid tumors. Systemic delivery of A83B4C63, however, may sensitize both cancer and normal cells to DNA damaging therapeutics. Preferential delivery of A83B4C63 to solid tumors by nanoparticles (NP) was proposed to reduce potential side effects of this PNKP inhibitor to normal tissue, particularly when combined with DNA damaging therapies. Here, we investigated the radio-sensitizing activity of A83B4C63 encapsulated in NPs (NP/A83) based on methoxy poly(ethylene oxide)-b-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) or solubilized with the aid of Cremophor EL: Ethanol (CE/A83) in human HCT116 colorectal cancer (CRC) models. Levels of γ-H2AX were measured and the biodistribution of CE/A83 and NP/A83 administered intravenously was determined in subcutaneous HCT116 CRC xenografts. The radio-sensitization effect of A83B4C63 was measured following fractionated tumor irradiation using an image-guided Small Animal Radiation Research Platform (SARRP), with 24 h pre-administration of CE/A83 and NP/A83 to Luc+/HCT116 bearing mice. Therapeutic effects were analyzed by monitoring tumor growth and functional imaging using Positron Emission Tomography (PET) and [18F]-fluoro-3'-deoxy-3'-L:-fluorothymidine ([18F]FLT) as a radiotracer for cell proliferation. The results showed an increased persistence of DNA damage in cells treated with a combination of CE/A83 or NP/A83 and IR compared to those only exposed to IR. Significantly higher tumor growth delay in mice treated with a combination of IR and NP/A83 than those treated with IR plus CE/A83 was observed. [18F]FLT PET displayed significant functional changes for tumor proliferation for the drug-loaded NP. This observation was attributed to the higher A83B4C63 levels in the tumors for NP/A83-treated mice compared to those treated with CE/A83. Overall, the results demonstrated a potential for A83B4C63-loaded NP as a novel radio-sensitizer for the treatment of CRC.

16.
Biosens Bioelectron ; 168: 112556, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890931

RESUMO

We reported a CRISPR/Cas-based dual amplified sensing strategy for rapid, sensitive and selective detection of polynucleotide kinase/phosphatase (PNKP), a DNA damage repair-related biological enzyme. In this strategy, a PNKP-triggered nicking enzyme-mediated strand displacement amplification reaction was introduced to enrich the activator DNA strands for CRISPR/Cas. Such an isothermal DNA amplification step, together with subsequent activated CRISPR/Cas-catalyzed cleavage of fluorescent-labeled short-stranded DNA probes, enable synergetic signal amplification for sensitive PNKP detection. The proposed strategy showed a wide linear detection range (more than 3 orders of magnitude ranging from 1× 10-5 to 2.5 × 10-2 U/mL T4 PNKP) and a detection limit as low as 3.3 × 10-6 U/mL. It was successfully used for the PNKP activity detection in cell extracts with high fidelity and displayed great potential for enzyme inhibitor screening and inhibitory capability evaluation. This work broadens the applications of CRISPR/Cas12a-based sensors to biological enzymes and provides a way to improve the sensitivity by introducing an isothermal signal amplification step. Such an isothermal DNA amplification-CRISPR/Cas-combined biosensor design concept might expand CRISPR/Cas-based sensing systems and promote their applications in various fields such as disease diagnosis and drug screening.


Assuntos
Técnicas Biossensoriais , Polinucleotídeo 5'-Hidroxiquinase , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Monoéster Fosfórico Hidrolases , Polinucleotídeo 5'-Hidroxiquinase/genética
17.
Pediatr Neurol ; 113: 26-32, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32980744

RESUMO

BACKGROUND: We aimed to expand the number of currently known pathogenic PNKP mutations, to study the phenotypic spectrum, including radiological characteristics and genotype-phenotype correlations, and to assess whether immunodeficiency and increased cancer risk are part of the DNA repair disorder caused by mutations in the PNKP gene. METHODS: We evaluated nine patients with PNKP mutations. A neurological history and examination was obtained. All patients had undergone neuroimaging and genetic testing as part of the prior diagnostic process. Laboratory measurements included potential biomarkers, and, in the context of a DNA repair disorder, we performed a detailed immunologic evaluation, including B cell repertoire analysis. RESULTS: We identified three new mutations in the PNKP gene and confirm the phenotypic spectrum of PNKP-associated disease, ranging from microcephaly, seizures, and developmental delay to ataxia with oculomotor apraxia type 4. Irrespective of the phenotype, alpha-fetoprotein is a biochemical marker and increases with age and progression of the disease. On neuroimaging, (progressive) cerebellar atrophy was a universal feature. No clinical signs of immunodeficiency were present, and immunologic assessment was unremarkable. One patient developed cancer, but this was attributed to a concurrent von Hippel-Lindau mutation. CONCLUSIONS: Immunodeficiency and cancer predisposition do not appear to be part of PNKP-associated disease, contrasting many other DNA repair disorders. Furthermore, our study illustrates that the previously described syndromes microcephaly, seizures, and developmental delay, and ataxia with oculomotor apraxia type 4, represent the extremes of an overlapping spectrum of disease. Cerebellar atrophy and elevated serum alpha-fetoprotein levels are early diagnostic findings across the entire phenotypical spectrum.


Assuntos
Enzimas Reparadoras do DNA/genética , Síndromes de Imunodeficiência/epidemiologia , Microcefalia/genética , Mutação/genética , Neoplasias/epidemiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ataxias Espinocerebelares/congênito , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Humanos , Masculino , Países Baixos , Fenótipo , Convulsões/genética , Ataxias Espinocerebelares/genética , Adulto Jovem
18.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205441

RESUMO

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Assuntos
Ataxina-3/genética , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Doença de Machado-Joseph/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Ataxina-3/metabolismo , Encéfalo/patologia , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Modelos Animais de Doenças , Drosophila , Feminino , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Peptídeos/genética , RNA Interferente Pequeno/metabolismo
19.
Transl Neurodegener ; 8: 14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110700

RESUMO

Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.

20.
Parkinsonism Relat Disord ; 64: 342-345, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30956058

RESUMO

PNKP gene encodes for a kinase/phosphatase involved in DNA damage response, controlled and stabilized by ATM phosphorylation. PNKP deficiency, thus far described in 40 subjects, has been associated with a complex neurological phenotype encompassing microcephaly, seizures, developmental delay, ataxia, oculomotor apraxia and polyneuropathy. We report a new case expanding the clinical phenotype of this rare disorder. This 25 years old girl presented with chorea at the age of 2 years and remained stable up to the adult age when the emergence of fatigability and asthenia of lower limbs prompted a new examination disclosing a sensory-motor axonal demyelinating neuropathy. Clinical exome sequencing revealed two previously described variants in PNKP gene. This case highlights the phenotypic variability of PNKP associated disorders, showing that an early onset apparently non progressive chorea can be the presenting symptoms of this rare condition.


Assuntos
Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Transtornos dos Movimentos/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polineuropatias/diagnóstico , Adulto , Coreia/diagnóstico , Coreia/genética , Feminino , Humanos , Transtornos dos Movimentos/genética , Fenótipo , Polineuropatias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA