Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Sci Total Environ ; 931: 172858, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38714260

RESUMO

Multi-element compound-specific stable isotope analysis (ME-CSIA) allows monitoring the environmental behavior and transformation of most common and persistent contaminants. Recent advancements in analytical techniques have extended the applicability of ME-CSIA to organic micropollutants, including pesticides. Nevertheless, the application of this methodology remains unexplored concerning harmful insecticides such as methoxychlor, a polar organochlorine pesticide usually detected in soil and groundwater. This study introduces methods for dual carbon and chlorine compound-specific stable isotope analysis (δ13C-CSIA and δ37Cl-CSIA) of both methoxychlor and its metabolite, methoxychlor olefin, with a sensitivity down to 10 and 100 mg/L, and a precision lower than 0.3 and 0.5 ‰ for carbon and chlorine CSIA, respectively. Additionally, three extraction and preconcentration techniques suitable for ME-CSIA of the target pesticides at environmentally relevant concentrations were also developed. Solid-phase extraction (SPE) and liquid-solid extraction (LSE) effectively extracted methoxychlor (107 ± 27 % and 87 ± 13 %, respectively) and its metabolite (91 ± 27 % and 106 ± 14 %, respectively) from water and aquifer slurry samples, respectively, with high accuracy (Δδ13C and Δδ37Cl ≤ ± 1 ‰). Combining CSIA with polar organic chemical integrative samplers (POCISs) for the extraction of methoxychlor and methoxychlor olefin from water samples resulted in insignificant fractionation for POCIS-CSIA (Δδ13C ≤ ± 1 ‰). A relevant sorption of methoxychlor was detected within the polyethersulfones membranes of the POCISs resulting in temporary carbon isotope fractionation depending on the sorbed mass fraction during the first deployment days. This highlights the critical role of the interactions of polar analytes with POCIS sorbents and membranes in the performance of this method. Altogether, this study proposes a proof of concept for ME-CSIA of methoxychlor and its metabolites, opening the door for future investigations of their sources and transformation processes in contaminated sites.

2.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577774

RESUMO

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Assuntos
Polietileno , Poluentes Químicos da Água , Polietileno/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos , Silicones
3.
Sci Total Environ ; 925: 171755, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494027

RESUMO

The Ross Sea, among the least human-impacted marine environments worldwide, recently became the first marine protected area in Antarctica. To assess the impact of the Italian research station Mario Zucchelli (MZS) on the surrounding waters, passive sampling - as well as spot sampling for comparison - took place in the effluent of the wastewater treatment plant (WWTP) and the receiving surface marine waters. Polar Organic Chemical Integrative Samplers (POCIS) were deployed for six consecutive 2-week periods from November to February in a reservoir collecting the wastewater effluent. Passive samplers were also deployed at shallow depth offshore from the wastewater effluent outlet from MZS for two separate 3-week periods (November 2021 and January 2022). Grab water samples were collected alongside each POCIS deployment, for comparison with passive sampling results. POCIS, used for the first time in Antarctica, demonstrated to be advantageous to estimate time-averaged concentrations in waters and the results were comparable to those obtained by repeated spot samplings. Among the 23 studied ECs - including drugs, UV-filters, perfluorinated substances, caffeine - 15 were detected in both grab and passive sampling in the WWTP effluent and followed similar concentration profiles in both types of sampling. High concentrations of caffeine, naproxen and ketoprofen in the dozens of µg L-1 were detected. Other compounds, including drugs and several UV filters, were detected down to sub- µg L-1 concentrations. In marine waters close to the effluent output, only traces of a drug (4.8 ng L-1) and two UV filters (up to 0.04 µg L-1) were quantified.

4.
Sci Total Environ ; 904: 166824, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673241

RESUMO

Irrational use of fipronil for rice pest control often occurred, resulting in high concentrations of fipronil and its transformation products (TPs) (collectively termed fiproles) in aquatic sediment, calling for a better understanding of the migration and transformation of fipronil in surface water as well as efficient methods for source identification. Herein, the fate and transport of fiproles from a paddy field to receiving rivers were assessed in Poyang Lake basin, Jiangxi, China using polar organic chemical integrative samplers with mixed-mode adsorbents (POCIS-MMA). Average concentrations of fiproles in water were 6.16 ± 6.32 ng/L, with median, minimum, and maximum values being 2.99 ± 0.67, 0.40 ± 0.08, and 18.6 ± 3.1 ng/L, respectively. In all samples, over half of fiproles (55.9 %-90.8 %) presented in the form of TPs and fipronil desulfinyl was the dominant TP. Two approaches were applied for source identification, including the change of molar concentration ratios of fipronil to its TPs and the relative attenuation values of fiproles normalized to a reference compound (acetamiprid) that was stable in aquatic environment. While the paddy field upstream was the main source of waterborne fiproles, additional input sources in the downstream region were identified. The present study indicated that the combination of attenuation of molar concentration ratios of micro-pollutants to their respective TPs and relative attenuation values of micro-pollutants' concentrations normalized to a reference compound measured by POCIS is an effective means to study the migration and transformation of micro-pollutants in field.

5.
Sci Total Environ ; 904: 166326, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37591395

RESUMO

Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.


Assuntos
Praguicidas , Smegmamorpha , Poluentes Químicos da Água , Animais , Praguicidas/toxicidade , Praguicidas/análise , Ecossistema , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Agricultura , Smegmamorpha/metabolismo , Peixes/metabolismo , Biomarcadores/metabolismo , Água
6.
Sci Total Environ ; 903: 165905, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532041

RESUMO

The possibilities of expanding a groundwater quality monitoring scheme by passive sampling using polar organic chemical integrative sampler (POCIS) comprising HLB sorbent as the receiving phase were explored. Passive sampling and grab sampling were carried out simultaneously in the regions with vulnerable groundwater resources in Slovakia, between 2013 and 2021. For 27 pesticides and degradation products detected both in POCIS and the grab samples, in situ sampling rates were calculated and statistically evaluated. The limited effectiveness of the receiving phase in POCIS for sampling polar or ionized compounds was confirmed through a comparison of the medians of compound-specific sampling rates. For the majority of the monitored compounds the median sampling rates varied between 0.01 and 0.035 L/day. In some cases, the actual in situ values could be confirmed by parallel exposure of POCIS and silicone rubber sheet employed to obtain a benchmark for maximum attainable sampling rate. Sampling site and sampling period appear to have also some influence on the sampling rates, which was attributed in part to the groundwater velocity varying in both space and time. The influence of physico-chemical parameters (temperature, pH, electrolytic conductivity) remains mostly questionable due to the naturally limited ranges of recorded values over the entire duration of the study. Concentrations of pollutants in POCIS could be used for predicting time weighed average concentrations in water, provided the sampling rates were known and relatively constant. Generally, the compound-specific sampling rate cannot be considered constant due to a combination of naturally varying environmental factors that influence the actual in situ sampling rate. The relative standard deviation of concentration data from POCIS exposed in triplicates varied between approx. 5 %-50 %. Utilizing exploratory data analysis approach and tools enabled us to obtain a relatively complex picture of the situation and progress regarding pesticide pollution of groundwater in the monitored areas.

7.
Environ Pollut ; 323: 121257, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828359

RESUMO

In this work, the performances of a Large Diffusive Gradients in Thin films (L-DGT, i.e., a DGT based on a Chemcatcher® holder with a 5-fold larger sampling area) were compared on-field with the conventional DGT and the Polar Organic Chemical Integrative Sampler (POCIS) for the monitoring of a wide range of organic contaminants (i.e., 65 pesticides and metabolites, 53 pharmaceuticals and 12 hormones). These three passive samplers were simultaneously deployed in four rivers during 14 days. Their performances were then evaluated according to their detection and quantification capacities and their physical robustness. The results obtained confirm the advantages of the L-DGT over the conventional DGT regarding its sensitivity but also its robustness during field deployment. The POCIS provides the higher sensitivity, allowing the detection of more organic compounds compared to the DGT and, to a lesser extent, the L-DGT. However, both L-DGT and DGT reduces the uncertainty on the determination of the time-weighted average concentrations (CW), mainly due to the narrow range of variation of their calibration parameters. Indeed, for a given compound, CW can vary up to only a 3-fold factor with DGT and L-DGT compared to a 2 to 10-fold factor (up to 50) with POCIS. Thus, the L-DGT appears to be more suitable than DGT in low-contaminated contexts, which require higher sensitivity, or than POCIS when a CW determination is needed. For a qualitative evaluation however, the POCIS remains the most suitable passive sampler.


Assuntos
Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Praguicidas/análise , Compostos Orgânicos , Difusão
8.
Sci Total Environ ; 867: 161303, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592913

RESUMO

To assess the risk of pesticide mixtures in lagoon waters, this study adopted a multi-step approach using integrative passive samplers (POCIS) and concentration addition (CA) toxicological models. Two French Mediterranean lagoons (Thau and Or) were monitored for a range of 68 pesticides continuously over a period of a year (2015-16). The findings revealed mixtures of dissolved pesticides with varying composition and levels over the year. The Or site contained more pesticides than Thau site (37 vs 28 different substances), at higher concentrations (0.1-58.6 ng.L-1 at Or vs <0.1-9.9 at Thau) and with overall higher detection frequencies. All samples showed a potential chronic toxicity risk, depending on the composition and concentrations of co-occurring pesticides. In 74 % of the samples, this pesticide risk was driven by a few single substances (ametryn, atrazine, azoxystrobin, carbendazim, chlorotoluron, irgarol, diuron and metolachlor) and certain transformation products (e.g. DPMU and metolachlor OA/ESA). Individually, these were a threat for the three taxa studied (phytoplankton, crustaceans and fish). Yet even a drastic reduction of these drivers alone (up to 5 % of their current concentration) would not eliminate the toxicity risks in 56 % of the Or Lagoon samples, due to pesticide mixtures. The two CA-based approaches used to assess the combined effect of these mixtures, determined chronic potential negative impacts for both lagoons, while no acute risk was highlighted. This risk was seasonal, indicating the importance of monitoring in key periods (summer, winter and spring) to get a more realistic picture of the pesticide threat in lagoon waters. These findings suggest that it is crucial to review the current EU Water Framework Directive's risk-assessment method, as it may incorrectly determine pesticide risk in lagoons.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Acetamidas , Diurona , Monitoramento Ambiental , Praguicidas/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 869: 161720, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690093

RESUMO

The Polar Organic Chemical Integrative Samplers (POCIS) is the most widely used passive sampler for hydrophilic compounds, but unsuitable for certain ionic organic contaminants. The Diffusive Gradient in Thin-Film technique (o-DGT) has shown positive results for both ionic and hydrophilic compounds. However, a calibration step is now needed to evaluate kinetic constant of accumulation for a wide range of molecules. In this study, o-DGT and POCIS were compared for the sampling of three families of micropollutants of potential risk to aquatic environments: 53 pesticides, 36 pharmaceuticals and 20 hormones. A calibration experiment was conducted to compare the kinetic models and constants from a scientific and practical perspective. The results are discussed in a single table that summarizes the performance of both passive samplers for the 109 compounds of interest. The advantage of o-DGT is that it allows linear accumulation for 72 compounds versus only 33 with POCIS. The mean times to equilibrium obtained with o-DGT are higher than those obtained with POCIS. These results confirm that the presence of a diffusion gel delays the achievement of equilibrium during compound accumulation. Therefore, o-DGT can be considered for situations where POCIS cannot be used due to non-linear accumulation over a typical 14-day deployment period. However, overall sampling rates and mass transfer coefficients also appear reduced with o-DGT, which is explained by the smaller exchange surface area, as well as the consideration of an additional diffusive layer in this device. This paper also showed that the most appropriate membrane to sample polar compounds with o-DGT was a polyethersulfone polymer with a pore size of 5 µm.

10.
Chemosphere ; 311(Pt 1): 136997, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36309053

RESUMO

In this study, ChemcatcherTM (CC) and Polar Organic Chemical Integrative Samplers (POCIS) passive samplers were chosen to investigate trace organic chemical residues in urban streams of the megacity of Sydney, Australia. In situ calibration with these passive samplers investigated 1392 organic chemicals. Six sets of CC passive samplers fitted with SDB-XC or SDB-RPS disks and six POCIS containing Oasis HLB sorbent were deployed at three sites. Every week for six weeks across three deployments, composite water samples were retrieved from autosamplers, along with one set of CC/POCIS passive samplers. Samples were analysed by Automated Identification and Quantification System (AIQS) GC/MS or LC/QTOF-MS database methods with 254 chemicals detected. The most frequently detected compounds under GC/MS analysis were aliphatic, pesticides, phenols, PAHs, sterols and fatty acid methyl esters while from LC/QTOF-MS analysis these were pesticides, pharmaceuticals, and personal care products. Sampling rates (Rs) ranged between <0.001 - 0.132 L day-1 (CC SDB-XC, 18 chemicals), <0.001 - 0.291 L day-1 (CC SDB-RPS, 28 chemicals), and <0.001 - 0.576 L day-1 (POCIS Oasis HLB, 30 chemicals). Assessment of deployment duration indicated that about half of the chemicals that were continuously detected across all deployment weeks had maximal simple linear regression R2 values at four weeks for CC SDB-RPS (seven of 13 chemicals) and at three weeks for POCIS Oasis HLB (seven of 14 chemicals). Where ranges of Rs recorded from the estuarine site were able to be compared to ranges of Rs from one or both freshwater sites, only tributyl phosphate had a higher range of Rs out of 21 possible chemical comparisons, and suggested salinity was an unlikely influence on Rs. Whereas relatively higher rainfall of the third round of deployment aligned with higher Rs across the estuarine and freshwater sites for CC SDB-RPS and POCIS for nearly all possible comparisons.


Assuntos
Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Calibragem , Praguicidas/análise , Compostos Orgânicos/química
11.
Environ Sci Pollut Res Int ; 30(8): 20804-20820, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36260229

RESUMO

The increase in food needs due to high population growth in Niger has led to the intensification of urban agriculture and the increased use of pesticides. The objective of this study is primarily to assess the polar pesticide contamination (mainly herbicides) of the Niger River and its tributary, the Mekrou River, in Niger, using both grab sampling and POCIS (Polar Organic Chemical Integrative Samplers), and then to evaluate the risk to the aquatic environment. Two water sampling campaigns were carried out during the wet and dry seasons. The polar pesticides were analyzed by liquid chromatography coupled with tandem mass spectrometry, which allowed the identification of compounds with concentrations in the grab samples above the WHO guide values and the EU directive: diuron with 2221 ng/L (EU quality guideline: 200 ng/L), atrazine with 742 ng/L (EU quality guideline: 600 ng/L) and acetochlor with 238 ng/L (EU quality guideline: 100 ng/L). The risk assessment study indicated that diuron and atrazine present a high risk for the aquatic environment during the wet season. The main source of water contamination is the intensive use of pesticides in urban agriculture near the city of Niamey, and the intensive cotton farming in the Benin. Moreover, the surveys (30 producers interviewed) showed that 70% of the pesticides used are not approved by the Interstate Committee for Drought Control in the Sahel (CILSS) and some are prohibited in Niger. The inventory of pesticides sold in the zone showed that active ingredients used by producers are 48% insecticides, 45% herbicides, and 7% fungicides.


Assuntos
Atrazina , Herbicidas , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Rios/química , Diurona/análise , Atrazina/análise , Níger , Monitoramento Ambiental/métodos , Herbicidas/análise , Água/análise , Poluentes Químicos da Água/análise
12.
Molecules ; 27(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431996

RESUMO

Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.


Assuntos
Praguicidas , Poluentes Químicos da Água , Toxinas Marinhas , Adsorção , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/química , Compostos Orgânicos/química , Água , Preparações Farmacêuticas
13.
Crit Rev Anal Chem ; : 1-17, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36263980

RESUMO

The membranes in polar organic chemical integrative samplers (POCIS) enclose the receiving sorbent and protect it from coming into direct contact with the environmental matrix. They have a crucial role in extending the kinetic regime of contaminant uptake, by slowing down their diffusion between the water phase and the receiving phase. The drive to improve passive sampling requires membranes with better design and enhanced performances. In this review, the preparation of standard polyethersulfone (PES) membranes for POCIS is presented, as well as methods to evaluate their composition, morphology, structure, and performance. Generally, only supplier-related morphological and structural data are provided, such as membrane type, thickness, surface area, and pore diameter. The issues related to the use of PES membranes in POCIS applications are exposed. Finally, alternative membranes to PES in POCIS are also discussed, although no better membrane has yet been developed. This review highlights the urge for more membrane characterization details and a better comprehension of the mechanisms which underlay their behavior and performance, to improve membrane selection and optimize passive sampler development.

14.
Environ Int ; 170: 107585, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265356

RESUMO

Identification of bioaccumulating contaminants of emerging concern (CECs) via suspect and non-target screening remains a challenging task. In this study, ion mobility separation with high-resolution mass spectrometry (IM-HRMS) was used to investigate the effects of drift time (DT) alignment on spectrum quality and peak annotation for screening of CECs in complex sample matrices using data independent acquisition (DIA). Data treatment approaches (Binary Sample Comparison) and prioritisation strategies (Halogen Match, co-occurrence of features in biota and the water phase) were explored in a case study on zebra mussel (Dreissena polymorpha) in Lake Mälaren, Sweden's largest drinking water reservoir. DT alignment evidently improved the fragment spectrum quality by increasing the similarity score to reference spectra from on average (±standard deviation) 0.33 ± 0.31 to 0.64 ± 0.30 points, thus positively influencing structure elucidation efforts. Thirty-two features were tentatively identified at confidence level 3 or higher using MetFrag coupled with the new PubChemLite database, which included predicted collision cross-section values from CCSbase. The implementation of predicted mobility data was found to support compound annotation. This study illustrates a quantitative assessment of the benefits of IM-HRMS on spectral quality, which will enhance the performance of future screening studies of CECs in complex environmental matrices.


Assuntos
Dreissena , Animais
15.
Polymers (Basel) ; 14(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956682

RESUMO

Environmental monitoring and remediation often requires the collection of harmful substances from aqueous solutions. Absorption with solids is a useful technique for binding such substances even at very low concentration levels. Many of these contaminants are weak acids or bases. Some novel, nonionic polymeric sorbents, such as hypercrosslinked polymers or polymers with balanced hydrophilic-lipophilic properties (HLB) have been found to bind weak acids and bases with high distribution coefficients even at pH values where these compounds are almost completely ionized (typically near pH 7). To understand this phenomenon and its practical consequences, we have experimentally studied the adsorption of ionizable weak acids and bases as a function of pH and ionic strength on a the OASIS® HLB sorbent. Not surprisingly, the ionic forms of the weak acids and bases were found to be much less bound in the aqueous solution than their neutral forms. In spite of this, OASIS® HLB binds weak acids and bases around pH 7 considerably better than typical hydrophobic sorbents. The high overall distribution coefficients around pH 7 could be explained by two factors. One is that on OASIS® HLB, and on some other novel polymeric sorbents, the binding constant of the moderately hydrophobic neutral form is on the order of 100,000, i.e., much higher than on typical hydrophobic sorbents. Thus, even if the proportion of the neutral form in solution is only around 1% near pH 7, the adsorption of the neutral form is still significant. On the other hand, the binding of the apparently hydrophilic ionized forms occurs with distribution coefficients well above 100. The distribution coefficient of the ionic form appears to depend on ionic strength and the presence of competing ions. Adsorption of the ionic forms is found to be very similar to the adsorption of ionic surfactants. The pH dependence of the total adsorption of neutral and ionic forms together, is found to be steep around pH 7, and therefore the varying pH of natural waters may strongly influence the binding efficiency in practical applications, such as the collection (concentration) of contaminants or their passive sampling.

16.
Sci Total Environ ; 850: 157898, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35952872

RESUMO

Polar organic chemical integrative sampler (POCIS) contains sorbent, which is typically enclosed between two polyethersulfones (PES) membranes. A significant PES uptake is reported for many contaminants, yet, aqueous concentration is mainly correlated with the sorbent uptake using first-order kinetics. Under high PES sorption, the first-order kinetics often provide erroneous sampling rate for the sorbent phase due to increased membrane resistance. This work evaluated the uptake of four high PES sorbing chemicals, i.e., three Cl- and CH3-substituted nitrobenzenes and one chlorinated aniline using POCIS and the potential of a single-phase PES sampler using laboratory experiments. POCIS calibration results demonstrated that both sorbent and membrane had similar affinity for the target compounds. A rapid PES sorption occurred in the earlier days (<7 days) followed by a gradual increase in the PES phase concentration (equilibrium not achieved after 60 days). Especially, the membrane was the primary sink for 3,4-dichloroaniline and 3,4-dichloronitrobenzene for up to 14 and 31 days, respectively. On the other hand, the single-phase PES sampler showed similar mass uptake as POCIS and reached equilibrium within 19 days under static condition, indicating its potential suitability in the equilibrium regime. PES-water partition coefficient of the target compounds was between 1.2 and 6.5 L/g. Finally, we present a poly-parameter linear-free energy relationship (pp-LFER) using published data to predict the PES-water partition coefficients. The pp-LFER models showed moderate predictability as indicated by R2adj values between 0.7 and 0.9 for both internal and external data set consisting of a wide range of hydrophobic and hydrophilic compounds (-0.1 ≤ logKOW ≤ 7.4). The proposed pp-LFER model can be used to screen high PES-sorbing chemicals to increase the reliability and accuracy of aqueous concentration prediction from POCIS sampling and to select the most appropriate sampling approach for new compounds.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Compostos de Anilina , Monitoramento Ambiental/métodos , Nitrobenzenos , Polímeros , Reprodutibilidade dos Testes , Sulfonas , Água/química , Poluentes Químicos da Água/análise
17.
Environ Monit Assess ; 194(8): 564, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35788916

RESUMO

Polar organic chemical integrative samplers (POCIS) are widely used to track contaminants in surface waters. However, POCIS have not been used previously to monitor for artificial sweeteners as an indicator of wastewater pollution. In this study, we report for the first time the POCIS sampling rates (Rscal) for four artificial sweetener compounds, acesulfame (0.001 L/day), sucralose (0.114 L/day), cyclamate (0.001 L/day), and saccharin (0.002 L/day). We also prepared a modified POCIS with Strata X-AW anion exchange resin as a sorbent (i.e., ax-POCIS) and determined the sampling rates for sucralose (0.060 L/day) and acesulfame (0.128 L/day). Rscal values were adjusted according to the rate of loss of the performance reference compound, metoprolol-d6 from deployed POCIS to yield field sampling rates (i.e., Rsfield). Field validation of the monitoring method was conducted in Presqu'ile Bay on the north-central coast of Lake Ontario that is impacted by discharges from a sewage lagoon. POCIS were deployed at four sites within the bay and in the lagoon discharge. The four artificial sweeteners, as well as caffeine, ibuprofen, and other microcontaminants of sewage origin, were present throughout the bay at estimated concentrations in the ng/L range, and in the lagoon discharge at estimated concentrations higher by approximately one order of magnitude. Because acesulfame is present in ionic form over the pH range of natural waters, there are uncertainties related to the sampling rates using the standard POCIS. Sucralose is recommended as the best choice for source tracking using POCIS. There was good agreement between the concentrations of sucralose estimated from POCIS and the measured concentrations in grab samples of surface water in the bay. The present study provides key data for monitoring artificial sweeteners using POCIS.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Calibragem , Monitoramento Ambiental/métodos , Compostos Orgânicos , Esgotos , Edulcorantes , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
Chemosphere ; 302: 134907, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35561781

RESUMO

The abuse of legal and illegal drugs is a global public health problem, also affecting the social and economic well-being of the population. Thus, there is a significant interest in monitoring drug consumption. Relevant epidemiological information on lifestyle habits can be obtained from the chemical analysis of urban wastewater. In this work, passive sampling using polar organic chemical integrative samplers (POCIS) was used to quantify licit and illicit drugs biomarkers in wastewater for the application of wastewater-based epidemiology (WBE). In this WBE study, a small urban community of approximately 1179 inhabitants was monitored from 18 March 2020 to 3 March 2021, covering the mobility restriction and flexibilization periods of the COVID-19 pandemic in Brazil. Consumption was estimated for amphetamine, caffeine, cocaine, MDMA, methamphetamine, nicotine, and THC. The highest estimated consumption among illicit drugs was for THC (2369 ± 1037 mg day-1 1000 inh-1) followed by cocaine (353 ± 192 mg day-1 1000 inh-1). There was a negative correlation between consumption of caffeine, cocaine, MDMA, nicotine, and THC with human mobility, expressed by cellular phone mobility reports (P-value = 0.0094, 0.0019, 0.0080, 0.0009, and 0.0133, respectively). Our study is the first long-term drug consumption evaluation during the COVID-19 pandemic, with continuous sampling for almost a whole year. The observed reduction in consumption of both licit and illicit drugs is probably associated with stay-at-home orders and reduced access, which can be due to the closure of commercial facilities during some time of the evaluated period, smaller drug supply, and reduced income of the population due to the shutdown of companies and unemployment. The assay described in this study can be used as a complementary and cost-effective tool to the long-term monitoring of drug use biomarkers in wastewater, a relevant epidemiological strategy currently limited to short collection times.


Assuntos
COVID-19 , Cocaína , Drogas Ilícitas , N-Metil-3,4-Metilenodioxianfetamina , Transtornos Relacionados ao Uso de Substâncias , Poluentes Químicos da Água , Anfetamina , Brasil/epidemiologia , COVID-19/epidemiologia , Cafeína/análise , Cocaína/análise , Dronabinol , Humanos , Drogas Ilícitas/análise , N-Metil-3,4-Metilenodioxianfetamina/análise , Nicotina/análise , Pandemias , Detecção do Abuso de Substâncias , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água/análise
19.
Chemosphere ; 299: 134448, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364083

RESUMO

Emerging Contaminants (ECs) in marine waters include different classes of compounds, such as pharmaceuticals and personal care products, showing "emerging concern" related to the environment and human health. Their measurement in seawater is challenging mainly due to the low concentration levels and the possible matrix interferences. Mass spectrometry combined with chromatographic techniques represents the method of choice to study seawater ECs, due to its sensitivity and versatility. Nevertheless, these instrumental techniques have to be preceded by suitable sample collection and pre-treatment: passive sampling represents a powerful approach in this regard. The present review compiles the existing occurrence studies on passive sampling coupled to mass spectrometry for the monitoring of polar ECs in seawater and discusses the availability of calibration data that enabled quantitative estimations. A vast majority of the published studies carried out during the last two decades describe the use of integrative samplers, while applications of equilibrium samplers represent approximately 10%. The polar Chemcatcher was the first applied to marine waters, while the more sensitive Polar Organic Chemical Integrative Sampler rapidly became the most widely employed passive sampler. The organic Diffusive Gradients in Thin film technology is a recently introduced and promising device, due to its more reliable sampling rates. The best passive sampler selection for the monitoring of ECs in the marine environment as well as future research and development needs in this area are further discussed. On the instrumental side, combining passive sampling with high resolution mass spectrometry to better assess polar ECs is strongly advocated, despite the current challenges associated.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Calibragem , Monitoramento Ambiental/métodos , Humanos , Compostos Orgânicos/análise , Água do Mar , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 824: 153549, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35114228

RESUMO

In an effort to support European Union Water Framework Directive goals, we have set up a national demonstrator project to identify the advantages and limitations of passive samplers for regulatory monitoring of polar contaminants in surface waters. Here we carried out successive 14 day-deployments of polar organic chemical integrative samplers (POCIS) for one year at three sites. In parallel, we used the passive sampler deployment/retrieval operations to collect spot water samples for comparative analysis. We observed that frequency of quantification was significantly higher in POCIS than spot samples for 29 contaminants, similar for 15, and lower for one, because POCIS lowered the limits of quantification for most contaminants (median value factor of 11). We built a database of sampling rates (Rs) according to quality indices to convert concentrations in POCIS to concentrations in water (23 contaminants with a high-quality median Rs value, 20 with an approximate Rs and two with no usable Rs). Several phenomena were observed over one-year monitoring period. For example, after a flood episode, dilution phenomenon in rivers is correctly observed by using POCIS sampling whereas significant concentration increased due to soil leaching is observed with both passive and spot sampling. Cases of episodic contamination that were missed by spot sampling were observed with POCIS as it was able to capture contamination of short duration but sufficient intensity. Contamination by pharmaceuticals was found to come from wastewater treatment plant discharges and showed relatively little variation over the course of the year in both POCIS and spot samples. POCIS enables more reliable annual monitoring of pesticide and pharmaceutical contamination than spot sampling. Furthermore, POCIS also improves the environmental quality standards based assessment of chemical status and on annual average concentrations compared to spot sampling. This study demonstrates the value and practicability of POCIS-based chemical monitoring for use in regulatory control networks.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Calibragem , Compostos Orgânicos/análise , Água/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA