Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.424
Filtrar
1.
Mol Neurobiol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105872

RESUMO

Sevoflurane is one of the most commonly used general anesthetics for children and infants. Recent research indicates that repeated exposure to sevoflurane in neonates induces cognitive and fine motor deficits. Peroxisome proliferator-activated receptor-γ (PPARγ) agonists have garnered significant attention as potential therapies for a variety of neurological conditions. In this research, we evaluated whether pretreatment with rosiglitazone in neonatal mice could address myelination defects, cognitive impairment, and fine motor dysfunction via PPARγ. The mice were exposed to 3% sevoflurane for 2 h on postnatal days 6-8 (P6-P8). Behavioral tests were conducted from P29 to P34. Additionally, we evaluated morphological and functional changes related to myelin. Our results showed that rosiglitazone pretreatment significantly ameliorated the cognitive and fine motor impairments of repeated neonatal sevoflurane exposure. In addition, rosiglitazone pretreatment promoted oligodendrocyte precursor cells (OPCs) differentiation and myelination. This suggests that rosiglitazone may be used in clinical settings to enhance the security of neonatal sevoflurane exposure. Furthermore, PPARγ and fatty acid synthase (FASN) may be mediators for rosiglitazone, which alleviates myelination defects, cognitive impairment, and fine motor dysfunction.

2.
Arch Toxicol ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096369

RESUMO

Nano-plastics (NPs) have emerged as a significant environmental pollutant, widely existing in water environment, and pose a serious threat to health and safety with the intake of animals. Skeletal muscle, a vital organ for complex life activities and functional demands, has received limited attention regarding the effects of NPs. In this study, the effects of polystyrene NPs (PS-NPs) on skeletal muscle development were studied by oral administration of different sizes (1 mg/kg) of PS-NPs in mice. The findings revealed that PS-NPs resulted in skeletal muscle damage and significantly hindered muscle differentiation, exhibiting an inverse correlation with PS-NPs particle size. Morphological analysis demonstrated PS-NPs caused partial disruption of muscle fibers, increased spacing between fibers, and lipid accumulation. RT-qPCR and western blots analyses indicated that PS-NPs exposure downregulated the expression of myogenic differentiation-related factors (Myod, Myog and Myh2), activated PPARγ/LXRß pathway, and upregulated the expressions of lipid differentiation-related factors (SREBP1C, SCD-1, FAS, ACC1, CD36/FAT, ADIPOQ, C/EBPα and UCP-1). In vitro experiments, C2C12 cells were used to confirm cellular penetration of PS-NPs (0, 100, 200, 400 µg/mL) through cell membranes along with activation of PPARγ expression. Furthermore, to verify LXRß as a key signaling molecule, silencing RNA transfection experiments were conducted, resulting in no increase in the expressions of PPARγ, LXRß, SREBP1C, FAS, CD36/FAT, ADIPOQ, C/EBPα and UCP-1 even after exposure to PS-NPs. However, the expressions of SCD-1and ACC1 remained unaffected. The present study evidenced that exposure to PS-NPs induced lipid accumulation via the PPARγ/LXRß pathway thereby influencing skeletal muscle development.

3.
Int Immunopharmacol ; 140: 112822, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39096877

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by a dysregulated host response to infection. CD4+T cell reduction is crucial to sepsis-induced immunosuppression. Pyroptosis, a programmed necrosis, is concerned with lymphocytopenia. Peroxisome proliferator-activated receptor gamma (PPARγ) regulated by upstream mTOR, exerts anti-pyroptosis effects. To investigate the potential effects of mTOR-PPARγ on sepsis-induced CD4+T cell depletion and the underlying mechanisms, we observed mTOR activation and pyroptosis with PPARγ-Nrf suppression through cecal ligation and puncture (CLP) sepsis mouse model. Further mechanism research used genetically modified mice with T cell-specific knockout mTOR or Tuberous Sclerosis Complex1 (TSC1). It revealed that mTOR mediated CD4 + T cell pyroptosis in septic mice by negatively regulating the PPARγ-Nrf2 signaling pathway. Taken together, mTOR-PPARγ-Nrf2 signaling mediated the CD4+ T cell pyroptosis in sepsis, contributing to CD4+T cell depletion and immunosuppression.

4.
Free Radic Biol Med ; 223: 237-249, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094710

RESUMO

Chronic prostatitis-induced excessive inflammation and oxidative stress (OS) damage substantially affect men's quality of life. However, its treatment remains a major clinical challenge. Therefore, the identification of drugs that can decrease chronic prostatitis and oxidative stress targets is urgent and essential. CXCR4 is a classic chemokine receptor that is crucially associated with the occurrence and development of inflammation. This investigation aimed to elucidate how CXCR4 affects prostatitis regression and progression. The effect of CXCR4 on chronic prostatitis was evaluated by HE staining, immunohistochemistry, immunofluorescence, PCR, and TUNEL analyses. Furthermore, CXCR4 influence on metabolism was also evaluated by monitoring body weight, body temperature, food intake, and LC/MS. Additionally, chromatin immunoprecipitation, Western blot, and double luciferase reporter gene assays were carried out to elucidate the mechanism by which CXCR4 modulates Fads2 transcription by PPARγ. Lastly, ROS, DHE, mito-tracker, and ATP were utilized to validate the α-linolenic acid's protective effect against OS in prostate epithelial cells. It was revealed that the inhibition of CXCR4 can effectively alleviate prostatitis in mice. Furthermore, downregulating CXCR4 expression can markedly reduce the inflammatory cell infiltration in mouse prostates, decrease the elevated levels of DNA damage markers,MDA and 4-HNE, and mitigate apoptosis of prostatic epithelial cells. Moreover, treatment of CXCR4 knockdown mice with a PPARγ inhibitor revealed different degrees of changes in the above phenotypes. Mechanistically, the PPARγ protein translocates to the nucleus and serves as a transcription factor to regulate Fads2 expression, thereby altering PUFA metabolism. Additionally, in vitro experiments indicated that α-linolenic acid can effectively alleviate OS damage and RWPE-1 cell apoptosis by protecting mitochondrial function and enhancing the antioxidant capacity of prostatic epithelial cells. In conclusion, reducing the levels of CXCR4 can alleviate inflammation and OS damage in chronic prostatitis.

5.
Inflamm Res ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112648

RESUMO

BACKGROUND: Acute Kidney Injury (AKI), a prevalent complication of Liver Transplantation (LT) that occurs during the perioperative period has been established to profoundly impact the prognosis of transplant recipients. This study aimed to investigate the mechanism of the hepatic IRI-induced AKI and to identify potential therapeutic targets for treating this condition and improving the prognosis of LT patients. METHODS: An integrated transcriptomics and proteomics approach was employed to investigate transcriptional and proteomic alterations in hepatic IRI-induced AKI and the hypoxia-reoxygenation (H/R) model using TCMK-1 cells and the hepatic IRI-induced AKI mouse model using male C57BL/6 J mice were employed to elucidate the underlying mechanisms. Hematoxylin-eosin staining, reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot were used to assess the effect of Rosiglitazone (RGZ) on hepatic IRI-induced AKI in vitro and in vivo. RESULTS: According to the results, 322 genes and 128 proteins were differentially expressed between the sham and AKI groups. Furthermore, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analyses revealed significant enrichment in pathways related to amino acid and lipid metabolism. Additionally, the Protein-Protein Interaction (PPI) network analysis of the kidney tissues obtained from a hepatic IRI-induced AKI mouse model highlighted arachidonic acid metabolism as the most prominent pathway. Animal and cellular analyses further revealed that RGZ, a PPAR-γ agonist, could inhibit the expression of the PPAR-γ/NF-κB signaling pathway-associated proteins in in vitro and in vivo. CONCLUSIONS: These findings collectively suggest that RGZ ameliorates hepatic IRI-induced AKI via PPAR-γ/NF-κB signaling pathway modulation, highlighting PPAR-γ as a crucial therapeutic target for AKI prevention post-LT.

6.
Elife ; 132024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158026

RESUMO

Complementary structural biology approaches reveal how an agonist and a covalent inhibitor simultaneously bind to a nuclear receptor.


Assuntos
Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligação Proteica
7.
Drug Dev Ind Pharm ; : 1-27, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159138

RESUMO

Lung cancer has become progressively widespread, posing a challenge to traditional chemotherapeutic drugs such as platinum compounds and paclitaxel owing to growing resistance. Along with that, the chemotherapeutic drugs infer major side effects. The usage of natural compounds as chemosensitizers to boost the efficacy of these chemotherapeutic drugs and minimizing their toxicity is a plausible approach. In our investigation, we employed paclitaxel as the standard chemotherapeutic agent and utilized Chrysin-functionalized gold nanoparticles (CHR-AuNP) to augment its cytotoxicity. Gold nanoparticles were chosen for their inherent cytotoxic properties and ability to enhance Chrysin's bioavailability and solubility.Characterization of CHR-AuNP revealed spherical nanoparticles within the nano-size range (35-70 nm) with a stable negative zeta potential of -22 mV, confirmed by physicochemical analyses including UV-Vis spectroscopy, FT-IR, and visual observation of the wine-red coloration. MTT assay cytotoxicity studies demonstrated CHR-AuNP's superior efficacy compared to CHR alone, with synergistic effects observed in combination with paclitaxel, validated by Compusyn software. Morphological changes indicative of apoptosis were more pronounced with combined treatment, corroborated by AO/ETBr staining and Annexin V assays. Furthermore, the combination treatment amplified ROS production and destabilized mitochondrial membrane potential, while altering the expression of pro-apoptotic and anti-apoptotic proteins. Exploring the mechanistic pathways, we found that the drugs upregulated PPAR-γ expression while suppressing Akt and overexpressing PTEN, thereby impeding the Wnt/ß-catenin pathway commonly dysregulated in lung cancer. This highlights the potential of low-dose combination therapy with paclitaxel and CHR-AuNP as a promising strategy for addressing lung cancer's challenges.

8.
Int Immunopharmacol ; 141: 112917, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137630

RESUMO

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.

9.
J Cereb Blood Flow Metab ; : 271678X241274681, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39161254

RESUMO

Peroxisome proliferator-activated receptor-γ (PPARγ) plays a protective role against brain injury after stroke in mice. However, the relationship between PPARγ gene polymorphisms and the functional outcome of acute ischemic stroke (AIS) remains unknown. 8822 patients from The Third China National Stroke Registry (CNSR-III) after whole-genome sequencing, two functional single nucleotide polymorphisms(SNPs) in PPARγ, rs1801282 C > G and rs3856806 C > T, were further analysed. The primary outcome was neurological functional disability at three months. Of the 8822 patients, 968 (11.0%) and 3497 (39.6%) were carriers of rs1801282 and rs3856806, respectively. Carriers of rs3856806 showed reduced risks for three-month neurological functional disability (OR, 0.84; 95% CI, 0.73-0.98; p = 0.02) and reduced risks for higher infarct volume (OR 0.90, 95% CI, 0.81-0.99, p = 0.04). They also had a reduced risk of neurological functional disability only in case of lower baseline IL-6 levels (OR 0.64, 95% CI 0.48-0.84, Pinteraction = 0.01). Carriers of rs1801282 had a reduced risk for three-month neurological functional disability (OR 0.77, 95% CI, 0.61-0.99, p = 0.04). Our study suggested that PPARγ polymorphisms are associated with a reduced risk for neurological functional disability and higher infarct volume in AIS. Therefore, PPARγ can be a potential therapeutic target in AIS.

10.
FASEB J ; 38(16): e70002, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39162680

RESUMO

Breast cancer is one of the threatening malignant tumors with the highest mortality and incidence rate over the world. There are a lot of breast cancer patients dying every year due to the lack of effective and safe therapeutic drugs. Therefore, it is highly necessary to develop more effective drugs to overcome breast cancer. As a glycoside derivative of apigenin, cosmosiin is characterized by low toxicity, high water solubility, and wide distribution in nature. Additionally, cosmosiin has been shown to perform anti-tumor effects in cervical cancer, hepatocellular carcinoma and melanoma. However, its pharmacological effects on breast cancer and its mechanisms are still unknown. In our study, the anti-breast cancer effect and mechanism of cosmosiin were investigated by using breast cancer models in vivo and in vitro. The results showed that cosmosiin inhibited the proliferation, migration, and adhesion of breast cancer cells in vitro and suppressed the growth of tumor in vivo through binding with AhR and inhibiting it, thus regulating the downstream CYP1A1/AMPK/mTOR and PPARγ/Wnt/ß-catenin signaling pathways. Collectively, our findings have made contribution to the development of novel drugs against breast cancer by targeting AhR and provided a new direction for the research in the field of anti-breast cancer therapy.


Assuntos
Neoplasias da Mama , Proliferação de Células , Citocromo P-450 CYP1A1 , PPAR gama , Receptores de Hidrocarboneto Arílico , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , PPAR gama/metabolismo , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Camundongos Endogâmicos BALB C , Movimento Celular/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Via de Sinalização Wnt/efeitos dos fármacos
11.
FEBS J ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136063

RESUMO

Renal fibrosis is the common outcome of practically all progressive forms of chronic kidney disease (CKD), a significant societal health concern. Glutamate dehydrogenase (GDH) 1 is one of key enzymes in glutamine metabolism to catalyze the reversible conversion of glutamate to α-ketoglutarate and ammonia. However, its function in renal fibrosis has not yet been proven. In this study, GDH1 expression was significantly downregulated in kidney tissues of both children with kidney disease and animal models of CKD. In vivo, the use of R162 (a GDH1 inhibitor) significantly improved renal fibrosis, as indicated by Sirius red and Masson trichrome staining. These findings are consistent with the impaired expression of fibrosis indicators in kidneys from both the unilateral ureteral obstruction (UUO) and 5/6 nephrectomy (5/6 Nx) models. In vitro, silencing GDH1 or pretreatment with R162 inhibited the induction of fibrosis indicators in tissue kidney proximal tubular cells (TKPTS) treated with Transforming growth factor Beta 1 (TGF-ß1), whereas activating GDH1 worsened TGF-ß1's induction impact. Using RNA-sequence, luciferase reporter assays and Biacore analysis, we demonstrated that GDH1 interacts with Peroxisome proliferator-activated receptor gamma (PPARγ) and blocks its transcriptional activity, independent of the protein's expression. Additionally, R162 treatment boosted PPARγ transcriptional activity, and blocking of this signaling pathway reversed R162's protective effect. Finally, we discovered that R162 treatment or silencing GDH1 greatly lowered reactive oxygen species (ROS) and lipid accumulation. These findings concluded that suppressing GDH1 or R162 treatment could prevent renal fibrosis by augmenting PPARγ transcriptional activity to control lipid accumulation and redox balance.

12.
J Exp Clin Cancer Res ; 43(1): 227, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148124

RESUMO

BACKGROUND: The failure of proper recognition of the intricate nature of pathophysiology in colorectal cancer (CRC) has a substantial effect on the progress of developing novel medications and targeted therapy approaches. Imbalances in the processes of lipid oxidation and biosynthesis of fatty acids are significant risk factors for the development of CRC. Therapeutic intervention that specifically targets the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream response element, in response to lipid metabolism, has been found to promote the growth of tumors and has shown significant clinical advantages in cancer patients. METHODS: Clinical CRC samples and extensive in vitro and in vivo experiments were carried out to determine the role of ZDHHC6 and its downstream targets via a series of biochemical assays, molecular analysis approaches and lipid metabolomics assay, etc. RESULTS: To study the effect of ZDHHC6 on the progression of CRC and identify whether ZDHHC6 is a palmitoyltransferase that regulates fatty acid synthesis, which directly palmitoylates and stabilizes PPARγ, and this stabilization in turn activates the ACLY transcription-related metabolic pathway. In this study, we demonstrate that PPARγ undergoes palmitoylation in its DNA binding domain (DBD) section. This lipid-related modification enhances the stability of PPARγ protein by preventing its destabilization. As a result, palmitoylated PPARγ inhibits its degradation induced by the lysosome and facilitates its translocation into the nucleus. In addition, we have identified zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6) as a crucial controller of fatty acid biosynthesis. ZDHHC6 directly interacts with and adds palmitoyl groups to stabilize PPARγ at the Cys-313 site within the DBD domain of PPARγ. Consequently, this palmitoylation leads to an increase in the expression of ATP citrate lyase (ACLY). Furthermore, our findings reveals that ZDHHC6 actively stimulates the production of fatty acids and plays a role in the development of colorectal cancer. However, we have observed a significant reduction in the cancer-causing effects when the expression of ZDHHC6 is inhibited in in vivo trials. Significantly, in CRC, there is a strong positive correlation between the high expression of ZDHHC6 and the expression of PPARγ. Moreover, this high expression of ZDHHC6 is connected with the severity of CRC and is indicative of a poor prognosis. CONCLUSIONS: We have discovered a mechanism in which lipid biosynthesis is controlled by ZDHHC6 and includes the signaling of PPARγ-ACLY in the advancement of CRC. This finding provides a justification for targeting lipid synthesis by blocking ZDHHC6 as a potential therapeutic approach.


Assuntos
Aciltransferases , Neoplasias do Colo , Reprogramação Metabólica , PPAR gama , Animais , Feminino , Humanos , Masculino , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Metabolismo dos Lipídeos/genética , Lipidômica/métodos , Reprogramação Metabólica/genética , PPAR gama/metabolismo
13.
Curr Pharm Des ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39129280

RESUMO

INTRODUCTION: Macrophage dysregulation is a common pathogenic feature of viruses that provides extensive targets for antiviral therapy. Nobiletin, a polymethoxylated flavonoid found in citrus fruits, has a multitude of effects. METHODS: We investigated the effect of nobiletin on polyinosinic-polycytidylic acid (poly(I:C))-induced inflammation in RAW264.7 cells. Nobiletin inhibited the production of poly(I:C)-induced inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and CXCL10. High-throughput sequencing revealed that nobiletin inhibited the expression of TNF-α, IL-6, and CXCL10 and promoted the expression of CD206, Chil3, and Vcam1. In the Kyoto Encyclopedia of Genes and Genomes enrichment analyses, the upregulated differential genes were significantly enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. RESULTS: The PPAR-γ inhibitor T0070907 significantly reversed the inhibitory effects of nobiletin on IL-6 and CXCL10 but had no significant effect on TNF-α secretion. CONCLUSION: Thus, nobiletin regulated poly(I:C)-induced inflammatory responses in RAW264.7 cells partially via the PPAR-γ signaling pathway.

14.
Eur J Med Chem ; 276: 116728, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39089002

RESUMO

In consideration of several serious side effects induced by the classical AF-2 involved "lock" mechanism, recently disclosed PPARγ-Ser273 phosphorylation mode of action has become an alternative and mainstream mechanism for currently PPARγ-based drug discovery and development with an improved therapeutic index. In this study, by virtue of structure-based virtual high throughput screening (SB-VHTS), structurally chemical optimization by targeting the inhibition of the PPARγ-Ser273 phosphorylation as well as in vitro biological evaluation, which led to the final identification of a chrysin-based potential hit (YGT-31) as a novel selective PPARγ modulator with potent binding affinity and partial agonism. Further in vivo evaluation demonstrated that YGT-31 possessed potent glucose-lowering and relieved hepatic steatosis effects without involving the TZD-associated side effects. Mechanistically, YGT-31 presented such desired therapeutic index, mainly because it effectively inhibited the CDK5-mediated PPARγ-Ser273 phosphorylation, selectively elevated the level of insulin sensitivity-related Glut4 and adiponectin but decreased the expression of insulin-resistance-associated genes PTP1B and SOCS3 as well as inflammation-linked genes IL-6, IL-1ß and TNFα. Finally, the molecular docking study was also conducted to uncover an interesting hydrogen-bonding network of YGT-31 with PPARγ-Ser273 phosphorylation-related key residues Ser342 and Glu343, which not only gave a clear verification for our targeting modification but also provided a proof of concept for the abovementioned molecular mechanism.


Assuntos
Fígado Gorduroso , Flavonoides , PPAR gama , PPAR gama/metabolismo , PPAR gama/agonistas , Flavonoides/farmacologia , Flavonoides/química , Flavonoides/síntese química , Relação Estrutura-Atividade , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Humanos , Estrutura Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Camundongos , Masculino , Avaliação Pré-Clínica de Medicamentos
15.
Nat Prod Res ; : 1-5, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39021079

RESUMO

Endometritis is a common disease that endangers human and animal health. Cyanidin-3-O-glucoside (C3G), a kind of anthocyanin, exists in a variety of plants and shows many biological activities. Here, we investigated the effect and mechanism of C3G on LPS-induced endometritis in mice. The results showed that C3G significantly decreased wet to dry weight (W/D) ratio of uterine, improved uterine pathological injury, and inhibited MPO activity. Further mechanism investigation showed that the activation of NFκB pathway and the levels of TNF-a, IL-1ß, and IL-6 were significantly suppressed after C3G treatment. Conversely, C3G promoted LPS-induced the activation of the PPARγ/ABCA1 pathway. Interestingly, the anti-inflammatory effect of C3G was significantly weakened by GW9662, a PPARγ inhibitor. In addition, the anti-oxidative stress effect of C3G was also found. For the first time, our results showed that treatment with C3G might be a new strategy for treating endometritis.

16.
J Neuroimmune Pharmacol ; 19(1): 34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949694

RESUMO

Amorfrutin B is a selective PPARγ modulator that we demonstrated to be a promising neuroprotective compound in cellular models of stroke and perinatal asphyxia. Although neuronal mechanisms of amorfrutin B-evoked neuroprotection have been identified, none of them reflects the actions of the compound on microglia, which play a pivotal role in brain response to hypoxia/ischemia. Here, we provide evidence for amorfrutin B-induced effects on human microglia subjected to hypoxia/ischemia; the compound counteracts inflammation, and influences mitochondrial status and proliferation potential in a PPARγ-dependent manner. Post-treatment with amorfrutin B decreased the IBA1 fluorescence intensity, reduced caspase-1 activity, and downregulated IL1B/IL-1ß and TNFA but not IL10/IL-10 expression, which was upregulated. Amorfrutin B also stimulated PPARγ signaling, as evidenced by increased mRNA and/or protein levels of PPARγ and PGC1α. In addition, amorfrutin B reversed the hypoxia/ischemia-evoked effects on mitochondria-related parameters, such as mitochondrial membrane potential, BCL2/BCL2 expression and metabolic activity, which were correlated with diminished proliferation potential of microglia. Interestingly, the inhibitory effect of amorfrutin B on the proliferation potential and mitochondrial function of microglia is opposite to the stimulatory effect of amorfrutin B on mouse neuronal survival, as evidenced by increased neuronal viability and reduced neurodegeneration. In summary, this study showed for the first time that amorfrutin B compromises hypoxia/ischemia-induced activation of human microglia in a PPARγ-dependent manner, which involves inhibiting inflammation, normalizing mitochondrial status, and controlling proliferation potential. These data extend the protective potential of amorfrutin B in the pharmacotherapy of hypoxic/ischemic brain injury, targeting not only neurons but also activated microglia.


Assuntos
Proliferação de Células , Hipóxia-Isquemia Encefálica , Microglia , Mitocôndrias , PPAR gama , PPAR gama/metabolismo , Humanos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Células Cultivadas , Fármacos Neuroprotetores/farmacologia
17.
Hereditas ; 161(1): 21, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978149

RESUMO

PURPOSE: This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS: The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS: AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION: AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , PPAR gama , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Técnicas de Silenciamento de Genes , Camundongos Nus , Transdução de Sinais
18.
Biology (Basel) ; 13(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39056661

RESUMO

BACKGROUND: Human beings consume different chemical forms of iodine in their diet. These are transported by different mechanisms in the cell. The forms of iodine can be part of thyroid hormones, bind to lipids, be an antioxidant, or be an oxidant, depending on their chemical form. The excessive consumption of iodine has been associated with pancreatic damage and diabetes mellitus type 2, but the association between disease and the chemical form consumed in the diet is unknown. This research analyzes the effect of excessive iodine consumption as Lugol (molecular iodine/potassium iodide solution) and iodate on parameters of pancreatic function, thyroid and lipid profiles, antioxidant and oxidant status, the expression of IR/Akt/P-Akt/GLUT4, and transcription factors PPAR-γ and CEBP-ß. METHODS: Three groups of Wistar rats were treated with 300 µg/L of iodine in drinking water: (1) control, (2) KIO3, and (3) Lugol. RESULTS: Lugol and KIO3 consumption increased total iodine levels. Only KIO3 increased TSH levels. Both induced high serum glucose levels and increased oxidative stress and pancreatic alpha-amylase activity. Insulin levels and antioxidant status decreased significantly. PPAR-γ and C/EBP-ß mRNA expression increased. CONCLUSION: The pancreatic damage, hypertriglyceridemia, and oxidative stress were independent of the chemical form of iodine consumed. These effects depended on PPAR-γ, C/EBP-ß, GLUT-4, and IR.

19.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065817

RESUMO

Asiatic acid (AA) is a pentacyclic triterpene derived from the traditional medicine Centella asiatica. It is known for its anti-inflammatory, antioxidant, and lipid-regulating properties. Though previous studies have suggested its potential therapeutic benefits for atherosclerosis, its pharmacological mechanism is unclear. The objective of this study was to investigate the molecular mechanism of AA in the treatment of atherosclerosis. Therefore, network pharmacology was employed to uncover the mechanism by which AA acts as an anti-atherosclerotic agent. Furthermore, molecular docking, molecular dynamics (MD) simulation, and in vitro experiments were performed to elucidate the mechanism of AA's anti-atherosclerotic effects. Molecular docking analysis demonstrated a strong affinity between AA and PPARγ. Further MD simulations demonstrated the favorable stability of AA-PPARγ protein complexes. In vitro experiments demonstrated that AA can dose-dependently inhibit the expression of inflammatory factors induced by lipopolysaccharide (LPS) in RAW264.7 cells. This effect may be mediated through the PPARγ/NF-κB signaling pathway. This research underscores anti-inflammation as a crucial biological process in AA treatments for atherosclerosis, with PPARγ potentially serving as a key target.

20.
J Lipid Res ; : 100606, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067519

RESUMO

A high-fat diet (HFD) contributes to the pathogenesis of various inflammatory and metabolic diseases. Previous research confirms that under HFD conditions, the extraorbital lacrimal glands (ELGs) can be impaired, with significant infiltration of pro-inflammatory macrophages (Mps). However, the relationship between HFD and Mps polarization in the ELGs remains unexplored. We first identified and validated the differential expression of PPAR-γ in murine ELGs fed ND and HFD through RNA sequencing. Tear secretion was measured using the Schirmer test. Lipid droplet deposition within the ELGs was observed through Oil Red O staining and transmission electron microscopy. Mps phenotypes were determined through quantitative RT-PCR, immunofluorescence, and flow cytometric analysis. An in vitro high-fat culture system for Mps was established using palmitic acid (PA), with supernatants collected for co-culture with lacrimal gland acinar cells. Gene expression was determined through ELISA, immunofluorescence, immunohistochemistry, quantitative RT-PCR, and Western blot analysis. Pioglitazone reduced M1-predominant infiltration induced by HFD by increasing PPAR-γ levels in ELGs, thereby alleviating lipid deposition and enhancing tear secretion. In vitro tests indicated that PPAR-γ agonist shifted Mps from M1-predominant to M2-predominant phenotype in PA-induced Mps, reducing lipid synthesis in LGACs and promoting lipid catabolism, thus alleviating lipid metabolic disorders within ELGs. Conversely, the PPAR-γ antagonist induced opposite effects. In summary, the lacrimal gland is highly sensitive to high-fat and lipid metabolic disorders. Downregulation of PPAR-γ expression in ELGs induces Mps polarization toward predominantly M1 phenotype, leading to lipid metabolic disorder and inflammatory responses via the NF-κb/ERK/JNK/P38 pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA