Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 25(8): 3324-3347, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992176

RESUMO

Mitophagy must be carefully regulated to ensure that cells maintain appropriate numbers of functional mitochondria. The SCFFBXL4 ubiquitin ligase complex suppresses mitophagy by controlling the degradation of BNIP3 and NIX mitophagy receptors, and FBXL4 mutations result in mitochondrial disease as a consequence of elevated mitophagy. Here, we reveal that the mitochondrial phosphatase PPTC7 is an essential cofactor for SCFFBXL4-mediated destruction of BNIP3 and NIX, suppressing both steady-state and induced mitophagy. Disruption of the phosphatase activity of PPTC7 does not influence BNIP3 and NIX turnover. Rather, a pool of PPTC7 on the mitochondrial outer membrane acts as an adaptor linking BNIP3 and NIX to FBXL4, facilitating the turnover of these mitophagy receptors. PPTC7 accumulates on the outer mitochondrial membrane in response to mitophagy induction or the absence of FBXL4, suggesting a homoeostatic feedback mechanism that attenuates high levels of mitophagy. We mapped critical residues required for PPTC7-BNIP3/NIX and PPTC7-FBXL4 interactions and their disruption interferes with both BNIP3/NIX degradation and mitophagy suppression. Collectively, these findings delineate a complex regulatory mechanism that restricts BNIP3/NIX-induced mitophagy.


Assuntos
Proteínas F-Box , Proteínas de Membrana , Proteínas Mitocondriais , Mitofagia , Proteólise , Proteínas Proto-Oncogênicas , Animais , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Células HeLa , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases
2.
Mol Cell ; 84(2): 327-344.e9, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38151018

RESUMO

Mitophagy mediated by BNIP3 and NIX critically regulates mitochondrial mass. Cellular BNIP3 and NIX levels are tightly controlled by SCFFBXL4-mediated ubiquitination to prevent excessive mitochondrial loss and lethal disease. Here, we report that knockout of PPTC7, a mitochondrial matrix protein, hyperactivates BNIP3-/NIX-mediated mitophagy and causes perinatal lethality that is rescued by NIX knockout in mice. Biochemically, the PPTC7 precursor is trapped by BNIP3 and NIX to the mitochondrial outer membrane, where PPTC7 scaffolds assembly of a substrate-PPTC7-SCFFBXL4 holocomplex to degrade BNIP3 and NIX, forming a homeostatic regulatory loop. PPTC7 possesses an unusually weak mitochondrial targeting sequence to facilitate its outer membrane retention and mitophagy control. Starvation upregulates PPPTC7 expression in mouse liver to repress mitophagy, which critically maintains hepatic mitochondrial mass, bioenergetics, and gluconeogenesis. Collectively, PPTC7 functions as a mitophagy sensor that integrates homeostatic and physiological signals to dynamically control BNIP3 and NIX degradation, thereby maintaining mitochondrial mass and cellular homeostasis.


Assuntos
Proteínas de Membrana , Membranas Mitocondriais , Proteínas Mitocondriais , Mitofagia , Proteína Fosfatase 2C , Proteólise , Animais , Camundongos , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Proteína Fosfatase 2C/metabolismo
3.
Front Immunol ; 13: 853094, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514986

RESUMO

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignancy characterized by the aberrant accumulation of immature B-cell precursors in bone marrow and other lymphoid organs. Although several intrinsic regulatory signals participating in BCP-ALL have been clarified, detailed intrinsic and extrinsic mechanisms that regulate BCP-ALL progression have not been fully understood. In the current study, we report that miR-582 is downregulated in BCP-ALL cells compared with normal B cells. Forced overexpression of miR-582 attenuated BCP-ALL cell proliferation and survival. We found that miR-582 overexpression disturbed the mitochondrial metabolism of BCP-ALL cells, leading to less ATP but more ROS production. Mechanistically, we identified PPTC7 as a direct target of miR-582. MiR-582 overexpression inhibited the activity of CoQ10, which is downstream of PPTC7 and played an important positive regulatory role in mitochondrial electron transportation. Finally, we found that overexpression of miR-582 upregulated the expression of immune checkpoint molecule CD276 and reduced NK cell-mediated cytotoxicity against BCP-ALL cells. CD276 blockade significantly increased NK cell-mediated cytotoxicity against miR-582-overexpressing BCP-ALL cells. Together, our research demonstrates that miR-582 acts as a negative regulator of BCP-ALL cells by reducing proliferation and survival, but protects BCP-ALL cells from NK cell-mediated cytotoxicity, suggesting that miR-582 may be a new therapeutic biomarker for BCP-ALL with CD276 blocker.


Assuntos
Linfoma de Burkitt , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Antígenos B7 , Proliferação de Células/fisiologia , Humanos , Células Matadoras Naturais , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição
4.
Cell Mol Life Sci ; 79(2): 89, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35072776

RESUMO

Human macrophages infiltrating hypoxic regions alter their metabolism, because oxygen becomes limited. Increased glycolysis is one of the most common cellular adaptations to hypoxia and mostly is regulated via hypoxia-inducible factor (HIF) and RAC-alpha serine/threonine-protein kinase (Akt) signaling, which gets activated under reduced oxygen content. We noticed that micro RNA (miR)-193a-3p enhances Akt phosphorylation at threonine 308 under hypoxia. In detail, miR-193a-3p suppresses the protein abundance of phosphatase PTC7 homolog (PPTC7), which in turn increases Akt phosphorylation. Lowering PPTC7 expression by siRNA or overexpressing miR-193a-3p increases Akt phosphorylation. Vice versa, inhibition of miR-193a-3p attenuates Akt activation and prevents a subsequent increase of glycolysis under hypoxia. Excluding effects of miR-193a-3p and Akt on HIF expression, stabilization, and function, we noticed phosphorylation of 6 phosphofructo-2-kinase/fructose 2,6-bisphosphatase PFKFB3 in response to the PI3K/Akt/mTOR signaling cascade. Inhibition of PFKFB3 blocked an increased glycolytic flux under hypoxia. Apparently, miR-193a-3p balances Akt phosphorylation and dephosphorylation by affecting PPTC7 protein amount. Suppression of PPTC7 increases Akt activation and phosphorylation of PFKFB3, which culminates in higher rates of glycolysis under hypoxia.


Assuntos
Glicólise , Hipóxia/fisiopatologia , Macrófagos/patologia , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfofrutoquinase-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células , Humanos , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfofrutoquinase-2/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
5.
Cell Rep ; 18(2): 307-313, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076776

RESUMO

Proper maintenance of mitochondrial activity is essential for metabolic homeostasis. Widespread phosphorylation of mitochondrial proteins may be an important element of this process; yet, little is known about which enzymes control mitochondrial phosphorylation or which phosphosites have functional impact. We investigate these issues by disrupting Ptc7p, a conserved but largely uncharacterized mitochondrial matrix PP2C-type phosphatase. Loss of Ptc7p causes respiratory growth defects concomitant with elevated phosphorylation of select matrix proteins. Among these, Δptc7 yeast exhibit an increase in phosphorylation of Cit1p, the canonical citrate synthase of the tricarboxylic acid (TCA) cycle, that diminishes its activity. We find that phosphorylation of S462 can eliminate Cit1p enzymatic activity likely by disrupting its proper dimerization, and that Ptc7p-driven dephosphorylation rescues Cit1p activity. Collectively, our work connects Ptc7p to an essential TCA cycle function and to additional phosphorylation events that may affect mitochondrial activity inadvertently or in a regulatory manner.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Multimerização Proteica , Proteômica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA