Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Viruses ; 16(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793620

RESUMO

Hepatitis C virus (HCV) infects the human liver, and its chronic infection is one of the major causes of Hepatocellular carcinoma. Translation of HCV RNA is mediated by an Internal Ribosome Entry Site (IRES) element located in the 5'UTR of viral RNA. Several RNA Binding proteins of the host interact with the HCV IRES and modulate its function. Here, we demonstrate that PSPC1 (Paraspeckle Component 1), an essential paraspeckle component, upon HCV infection is relocalized and interacts with HCV IRES to prevent viral RNA translation. Competition UV-crosslinking experiments showed that PSPC1 interacts explicitly with the SLIV region of the HCV IRES, which is known to play a vital role in ribosomal loading to the HCV IRES via interaction with Ribosomal protein S5 (RPS5). Partial silencing of PSPC1 increased viral RNA translation and, consequently, HCV replication, suggesting a negative regulation by PSPC1. Interestingly, the silencing of PSPC1 protein leads to an increased interaction of RPS5 at the SLIV region, leading to an overall increase in the viral RNA in polysomes. Overall, our results showed how the host counters viral infection by relocalizing nuclear protein to the cytoplasm as a survival strategy.


Assuntos
Hepacivirus , Sítios Internos de Entrada Ribossomal , Biossíntese de Proteínas , RNA Viral , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Replicação Viral , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/genética , RNA Viral/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ligação Proteica , Hepatite C/virologia , Hepatite C/metabolismo , Interações Hospedeiro-Patógeno
2.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38551131

RESUMO

RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.


Assuntos
Drosophila , Neoplasias , Masculino , Animais , Humanos , Drosophila/genética , Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Splicing de RNA , RNA/metabolismo , Neoplasias/genética , Fator de Processamento Associado a PTB/metabolismo , Mamíferos/genética
3.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38360141

RESUMO

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias Pancreáticas/genética , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas de Ligação a RNA/metabolismo
4.
Int J Mol Sci ; 24(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38069409

RESUMO

Poly (ADP-ribose) polymerase (PARP) inhibitors are effective against BRCA1/2-mutated cancers through synthetic lethality. Unfortunately, most cases ultimately develop acquired resistance. Therefore, enhancing PARP inhibitor sensitivity and preventing resistance in those cells are an unmet clinical need. Here, we investigated the ability of paraspeckle component 1 (PSPC1), as an additional synthetic lethal partner with BRCA1/2, to enhance olaparib sensitivity in preclinical models of BRCA1/2-mutated breast and ovarian cancers. In vitro, the combined olaparib and PSPC1 small interfering RNA (siRNA) exhibited synergistic anti-proliferative activity in BRCA1/2-mutated breast and ovarian cancer cells. The combination therapy also demonstrated synergistic tumor inhibition in a xenograft mouse model. Mechanistically, olaparib monotherapy increased the expressions of p-ATM and DNA-PKcs, suggesting the activation of a DNA repair pathway, whereas combining PSPC1 siRNA with olaparib decreased the expressions of p-ATM and DNA-PKcs again. As such, the combination increased the formation of γH2AX foci, indicating stronger DNA double-strand breaks. Subsequently, these DNA-damaged cells escaped G2/M checkpoint activation, as indicated by the suppression of p-cdc25C (Ser216) and p-cdc2 (Tyr15) after combination treatment. Finally, these cells entered mitosis, which induced increased apoptosis. Thus, this proves that PSPC1 inhibition enhances olaparib sensitivity by targeting DNA damage response in our preclinical model. The combination of olaparib and PSPC1 inhibition merits further clinical investigation to enhance PARP inhibitor efficacy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Humanos , Feminino , Camundongos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA2/genética , RNA Interferente Pequeno/genética
5.
Hum Pathol ; 138: 1-11, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209920

RESUMO

Prostate cancer (PCa) remains the most commonly diagnosed cancer in men worldwide and is still the second leading cause of cancer-related death. One major cause of PCa development is epigenetic aberration, including histone modification. We have previously demonstrated that Lysine Demethylase 5C (KDM5C) plays an essential role in the development of PCa and drives PCa progression by promoting epithelial-mesenchymal transition. Epigenetic regulators often work in concert, for example, to regulate transcription. We identified Paraspeckle Component 1 (PSPC1) as an interacting protein of KDM5C, suggesting that these proteins might function together in PCa. Here, we systematically investigate the expression patterns of KDM5C and PSPC1 in 2 independent prostate cohorts (432 and 205 prostate tumors in total for PSPC1 and KDM5C, respectively) by immunohistochemistry. We demonstrate that the expression of PSPC1 correlates with that of KDM5C. In addition, PSPC1 is up-regulated in primary and metastatic PCa. Elevated PSPC1 expression correlates with a higher-grade group and an advanced T-stage. Patients with high PSPC1 expression have a worse biochemical recurrence-free survival. In addition, PSPC1 expression is an independent prognostic parameter. Our data indicate that KDM5C and PSPC1 are involved in PCa progression, and therapeutic inhibition of KDM5C and PSPC1 by selective compounds might be a promising approach for the treatment of PCa.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Próstata , Transição Epitelial-Mesenquimal , Proteínas de Ligação a RNA , Histona Desmetilases
6.
Cell Rep ; 39(10): 110928, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675764

RESUMO

TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.


Assuntos
Células-Tronco Embrionárias , Complexo Repressor Polycomb 2 , Diferenciação Celular/genética , Cromatina/metabolismo , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética
7.
Mol Carcinog ; 61(1): 73-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699643

RESUMO

Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFß (TGFß1), TGFß-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFß, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Metano/administração & dosagem , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA/genética , Células A549 , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Células HCT116 , Células Hep G2 , Humanos , Metano/farmacologia , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Células PC-3 , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(11): 1527-1537, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34490876

RESUMO

Liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in mammal cells. However, there are few reports that focus on the correlation of mouse oocyte maturation with LLPS. Previous studies have reported that paraspeckle component 1 (PSPC1) is related to the occurrence and development of tumors, but whether PSPC1 functions in mouse oocyte maturation is still unclear. Sequence analysis of PSPC1 protein showed that it contains a prion-like domain (PrLD) that is required for phase separation of proteins. In this study, we found that PSPC1 could undergo phase separation. Moreover, the loss of PrLD domain of PSPC1 could greatly weaken its phase separation ability. The immunofluorescence assays showed that PSPC1 is present in mouse oocytes in the germinal vesicle (GV) stage. Knockdown of PSPC1 significantly impeded the maturation of mouse oocytes in vitro. CHK1 has been reported to play important roles in the GV stage of mouse oocytes. Co-IP experiment revealed that PSPC1 could interact with phosphatase serine/threonine-protein phosphatase 5 (PPP5C), which regulates CHK1 phosphorylation. Western blot analysis revealed that PSPC1 could regulate the phosphorylation of CHK1 through PPP5C; however, PSPC1 without PrLD domain was inactive, suggesting that the lack of phase separation ability led to the abnormal function of PSPC1 in regulating CHK1 phosphorylation. Thus, we conclude that PSPC1 may undergo phase separation to regulate the phosphorylation level of CHK1 via PPP5C and participate in mouse oocyte maturation. Our study provides new insights into the mechanism of mouse oocyte maturation.


Assuntos
Quinase 1 do Ponto de Checagem/genética , Proteínas Nucleares/genética , Oócitos/metabolismo , Fosfoproteínas Fosfatases/genética , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular , Quinase 1 do Ponto de Checagem/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
9.
J Biomed Sci ; 28(1): 57, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34340703

RESUMO

Dysregulation of nucleocytoplasmic shuttling is commonly observed in cancers and emerging as a cancer hallmark for the development of anticancer therapeutic strategies. Despite its severe adverse effects, selinexor, a selective first-in-class inhibitor of the common nuclear export receptor XPO1, was developed to target nucleocytoplasmic protein shuttling and received accelerated FDA approval in 2019 in combination with dexamethasone as a fifth-line therapeutic option for adults with relapsed refractory multiple myeloma (RRMM). To explore innovative targets in nucleocytoplasmic shuttling, we propose that the aberrant contextual determinants of nucleocytoplasmic shuttling, such as PSPC1 (Paraspeckle component 1), TGIF1 (TGF-ß Induced Factor Homeobox 1), NPM1 (Nucleophosmin), Mortalin and EBP50, that modulate shuttling (or cargo) proteins with opposite tumorigenic functions in different subcellular locations could be theranostic targets for developing anticancer strategies. For instance, PSPC1 was recently shown to be the contextual determinant of the TGF-ß prometastatic switch and PTK6/ß-catenin reciprocal oncogenic nucleocytoplasmic shuttling during hepatocellular carcinoma (HCC) progression. The innovative nucleocytoplasmic shuttling inhibitor PSPC1 C-terminal 131 polypeptide (PSPC1-CT131), which was developed to target both the shuttling determinant PSPC1 and the shuttling protein PTK6, maintained their tumor-suppressive characteristics and exhibited synergistic effects on tumor suppression in HCC cells and mouse models. In summary, targeting the contextual determinants of nucleocytoplasmic shuttling with cargo proteins having opposite tumorigenic functions in different subcellular locations could be an innovative strategy for developing new therapeutic biomarkers and agents to improve cancer therapy.


Assuntos
Progressão da Doença , Neoplasias/genética , Oncogenes , Proteínas de Ligação a RNA/genética , Translocação Genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nucleofosmina , Proteínas de Ligação a RNA/metabolismo
10.
Cancer Manag Res ; 13: 3281-3291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33883941

RESUMO

BACKGROUND: Paraspeckle component 1 (PSPC1) is overexpressed in various cancer and correlated with poor survival in the patients. However, little is known about its expression and role in the progression of nasopharyngeal carcinomas (NPC). The purpose of this study is to examine PSPC1 expression in NPC and explore its role in clinical prognosis of radiation therapy. METHODS: The association of PSPC1 expression with clinicopathological features of 109 NPC patients was examined using partial correlation analysis. Cancer tissues were obtained prior to clinical treatment. All cases were diagnosed and pathologically confirmed to be poorly differentiated or undifferentiated NPC without distant metastasis. The patients were then treated with radiation and followed-up. Survival analysis was performed. RESULTS: Partial correlation analysis revealed that the PSPC1 expression in NPC was correlated with N classification, recurrence, prognosis and radiosensitivity in NPC patients, but not with the gender, age, pathohistological pattern, clinical stage, and T classification. The overexpression of PSPC1 was detected in 64 samples (58.72%). Kaplan-Meier survival analysis revealed that the overall survival (OS) was longer in NPC patients with PSPC1 low expression than that in those with PSPC1 high expression. Moreover, patients with the overexpression of PSPC1 had a low progression-free survival and distant metastasis-free survival rate, compared to those who had a low expression of PSPC1. Although not statistically significant, patients with high expression of PSPC1 had a lower locoregional recurrence-free survival rate than those with low expression, and the curves between the two groups was well separated. CONCLUSION: PSPC1 overexpression was associated with poor prognosis for NPC, which might be a novel useful biomarker to predict the response of NPC to radiation therapy and its clinical outcome.

11.
Cells ; 9(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570949

RESUMO

Paraspeckle protein 1 (PSPC1) overexpression in cancers is known to be the pro-metastatic switch of tumor progression associated with poor prognosis of cancer patients. However, the detail molecular mechanisms to facilitate cancer cell migration remain elusive. Here, we conducted integrated analysis of human phospho-kinase antibody array, transcriptome analysis with RNA-seq, and proteomic analysis of protein pulldown to study the molecular detail of PSPC1-potentiated phenotypical transformation, adhesion, and motility in human hepatocellular carcinoma (HCC) cells. We found that PSPC1 overexpression re-assembles and augments stress fiber formations to promote recruitment of focal adhesion contacts at the protruding edge to facilitate cell migration. PSPC1 activated focal adhesion-associated kinases especially FAK/Src signaling to enhance cell adhesion and motility toward extracellular matrix (ECM). Integrated transcriptome and gene set enrichment analysis indicated that PSPC1 modulated receptor tyrosine kinase IGF1R involved in the focal adhesion pathway and induction of diverse integrins expression. Knockdown IGF1R expression and treatment of IGF1R inhibitor suppressed PSPC1-induced cell motility. Interestingly, knockdown PSPC1-interacted paraspeckle components including NONO, FUS, and the lncRNA Neat1 abolished PSPC1-activated IGF1R expression. Together, PSPC1 overexpression induced focal adhesion formation and facilitated cell motility via activation of IGF1R signaling. PSPC1 overexpression in tumors could be a potential biomarker of target therapy with IGF1R inhibitor for improvement of HCC therapy.


Assuntos
Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/fisiopatologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Proteínas de Ligação a RNA/fisiologia , Receptor IGF Tipo 1/fisiologia , Carcinoma Hepatocelular/genética , Adesão Celular/genética , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Quimiotaxia , Adesões Focais/genética , Adesões Focais/fisiologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/genética , Proteômica , Motivo de Reconhecimento de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Transdução de Sinais
12.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 439-449, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204691

RESUMO

Splicing factor proline/glutamine-rich (SFPQ) is an essential RNA-binding protein that is implicated in many aspects of nuclear function. The structures of SFPQ and two paralogs, non-POU domain-containing octamer-binding protein and paraspeckle component 1, from the Drosophila behavior human splicing protein family have previously been characterized. The unusual arrangement of the four domains, two RNA-recognition motifs (RRMs), a conserved region termed the NonA/paraspeckle (NOPS) domain and a C-terminal coiled coil, in the intertwined dimer provides a potentially unique RNA-binding surface. However, the molecular details of how the four RRMs in the dimeric SFPQ interact with RNA remain to be characterized. Here, a new crystal structure of the dimerization domain of human SFPQ in the C-centered orthorhombic space group C2221 with one monomer in the asymmetric unit is presented. Comparison of the new crystal structure with the previously reported structure of SFPQ and analysis of the solution small-angle X-scattering data revealed subtle domain movements in the dimerization domain of SFPQ, supporting the concept of multiple conformations of SFPQ in equilibrium in solution. The domain movement of RRM1, in particular, may reflect the complexity of the RNA substrates of SFPQ. Taken together, the crystal and solution structure analyses provide a molecular basis for further investigation into the plasticity of nucleic acid binding by SFPQ in the absence of the structure in complex with its cognate RNA-binding partners.


Assuntos
Fator de Processamento Associado a PTB/química , Fator de Processamento Associado a PTB/metabolismo , Multimerização Proteica , RNA/metabolismo , Espalhamento a Baixo Ângulo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , RNA/química
13.
Mol Cell Oncol ; 5(4): e1472058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250921

RESUMO

Metastatic reprogramming toward malignant tumor progression relies on the activation of oncogenic regulators, yet the cellular determinants remain elucidated. Through identification of aberrant prognostic cancer genes, we identified paraspeckle component 1 (PSPC1) functions as a master activator of metastatic reprogramming by activating epithelial-to-mesenchymal transition (EMT), stemness and TGF-ß1 pro-metastatic switch.

14.
J Biol Chem ; 293(17): 6593-6602, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29530979

RESUMO

Members of the Drosophila behavior human splicing (DBHS) protein family are nuclear proteins implicated in many layers of nuclear functions, including RNA biogenesis as well as DNA repair. Definitive of the DBHS protein family, the conserved DBHS domain provides a dimerization platform that is critical for the structural integrity and function of these proteins. The three human DBHS proteins, splicing factor proline- and glutamine-rich (SFPQ), paraspeckle component 1 (PSPC1), and non-POU domain-containing octamer-binding protein (NONO), form either homo- or heterodimers; however, the relative affinity and mechanistic details of preferential heterodimerization are yet to be deciphered. Here we report the crystal structure of a SFPQ/PSPC1 heterodimer to 2.3-Å resolution and analyzed the subtle structural differences between the SFPQ/PSPC1 heterodimer and the previously characterized SFPQ homodimer. Analytical ultracentrifugation to estimate the dimerization equilibrium of the SFPQ-containing dimers revealed that the SFPQ-containing dimers dissociate at low micromolar concentrations and that the heterodimers have higher affinities than the homodimer. Moreover, we observed that the apparent dissociation constant for the SFPQ/PSPC1 heterodimer was over 6-fold lower than that of the SFPQ/NONO heterodimer. We propose that these differences in dimerization affinity may represent a potential mechanism by which PSPC1 at a lower relative cellular abundance can outcompete NONO to heterodimerize with SFPQ.


Assuntos
Proteínas Nucleares/química , Fator de Processamento Associado a PTB/química , Multimerização Proteica , Proteínas de Ligação a RNA/química , Cristalografia por Raios X , Humanos , Proteínas Nucleares/metabolismo , Fator de Processamento Associado a PTB/metabolismo , Estrutura Quaternária de Proteína , Proteínas de Ligação a RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA