Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Dev Dyn ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360498

RESUMO

BACKGROUND: Life cycle evolution includes ecological transitions and shifts in the timing of somatic and reproductive development (heterochrony). However, heterochronic changes can be tissue-specific, ultimately leading to the differential diversification of traits. Salamanders exhibit alternative life cycle polymorphisms involving either an aquatic to terrestrial metamorphosis (biphasic) or retention of aquatic larval traits into adulthood (paedomorphic). In this study, we used gene expression and histology to evaluate how life cycle evolution impacts temporal reproductive patterns in males of a polymorphic salamander. RESULTS: We found that heterochrony shifts the distribution of androgen signaling in the integument, which is correlated with significant differences in seasonal reproductive gland development and pheromone gene expression. In the testes, androgen receptor (ar) expression does not significantly vary between morphs or across seasons. We found significant differences in the onset of spermatogenesis, but by peak breeding season the testes were the same with respect to both histology and gene expression. CONCLUSION: This study provides an example of how seasonal heterochronic shifts in tissue-specific ar gene expression can disparately impact seasonal development and expression patterns across tissues, providing a potential mechanism for differential diversification of reproductive traits.

2.
Zookeys ; 1213: 183-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372283

RESUMO

Drilini are soft-bodied predatory click beetles with incompletely metamorphosed females. Approximately 150 described species are distributed in the Afrotropical, Palaearctic and Oriental realms, with the highest diversity known from sub-Saharan Africa. In this study, we describe Namibdrilusalbertalleni gen. et sp. nov. from Namibia which brings the total number of genera in Drilini to 16. The discovery of this unique taxon sheds new light on the diversity and evolution of the enigmatic paedomorphic beetle lineage and is interesting for several reasons. This new species is the only known representative of Drilini that has unidentate mandibles and lacks a hook on the dorsal part of the aedeagal median lobe, two of the few characters heretofore used for the unambiguous identification of members of this group. Furthermore, based on its morphology it belongs to a group of genera (Drilus clade) which heretofore contained only taxa from the Palaearctic Realm. We provide an updated diagnosis of the tribe Drilini, as well as an updated diagnosis and an identification key for the genera of the Drilus clade based on adult males. Further, we explain how to easily recognize adult Drilini from similar-looking soft-bodied elateroids like Elateridae: Omalisinae, Rhagophthalmidae, and Lampyridae: Ototretinae.

3.
J Anim Ecol ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39340187

RESUMO

Polyphenisms occur when phenotypic plasticity produces morphologically distinct phenotypes from the same genotype. Plasticity is maintained through fitness trade-offs which are conferred to different phenotypes under specific environmental contexts. Predicting the impacts of contemporary climate change on phenotypic plasticity is critical for climate-sensitive animals like amphibians, but elucidating the selective pressures maintaining polyphenisms requires a framework to control for all mechanistic drivers of plasticity. Using a 32-year dataset documenting the larval and adult histories of 717 Arizona tiger salamanders (Ambystoma mavortium nebulosum), we determined how annual variation in climate and density dependence explained the maintenance of two distinct morphs (terrestrial metamorph vs. aquatic paedomorph) in a high-elevation polyphenism. The effects of climate and conspecific density on morph development were evaluated with piecewise structural equation models (SEM) to tease apart the direct and indirect pathways by which these two mechanisms affect phenotypic plasticity. Climate had a direct effect on morph outcome whereby longer growing seasons favoured metamorphic outcomes. Also, climate had indirect effects on morph outcome as mediated through density-dependent effects, such as long overwintering coldspells corresponding to high cannibal densities and light snowpacks corresponding to high larval densities, both of which promoted paedomorphic outcomes. Both climate and density dependence serve as important proxies for growth and resource limitation, which are important underlying drivers of the phenotypic plasticity in animal polyphenisms. Our findings motivate new studies to determine how contemporary climate change will alter the selective pressures maintaining phenotypic plasticity and polyphenisms.

4.
J Morphol ; 285(10): e21778, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39311640

RESUMO

Evolutionary body size decrease has profound consequences for the morphology of an organism. In the evolution of the Characidae, the most species-rich family of Neotropical fishes, a prominent trend is the reduction of body size. The most typical effect is the simplification and reduction of morphological features through terminal deletion processes, resulting in the loss of skeletal elements and structures. To provide further information on the matter, we present a detailed description of the skeleton of Hyphessobrycon piabinhas, a poorly known, small representative of the largest genus of Characidae. We further discuss the identity and phylogenetic relationships of H. piabinhas. It belongs to the subfamily Stethaprioninae and exhibits considerable morphological similarity to other congeners from neighboring drainage systems. We identify several morphological simplifications in H. piabinhas and discuss them based on ontogenetic data available for Characiformes. These developmentally truncated elements are also present in many other small representatives of the family and seem to be among the first morphological modifications to occur in the context of body size reduction of Characidae. We argue that structural losses are not strictly correlated with sizes below 26 mm SL, although the most notable simplifications are typically observed in the miniatures.


Assuntos
Tamanho Corporal , Filogenia , Animais , Characidae/anatomia & histologia , Characidae/genética , Evolução Biológica , Osteologia , Osso e Ossos/anatomia & histologia
5.
Anat Sci Int ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266906

RESUMO

The persistence of the median artery in adult life, a remnant of the early brachial artery in the embryonic stage, has been reported in many anatomical and clinical studies. Herein, we aimed to investigate the prevalence and origin of the median artery in cadavers. We examined 53 adult Japanese cadavers and carefully dissected 106 upper limbs, and the arterial systems in the forearms and hands were observed macroscopically. We found the palmar type of the median artery on 106 sides in 53 cadavers, and found that it passes through the carpal tunnel and forms the superficial palmar arch in the hand in only two cadavers. The antebrachial type, ending in the forearm before reaching the wrist joint, was detected on 63 sides in 44 cadavers. The proportions of the origins of the median artery examined in this study were as follows: originating from the common interosseous artery (CIA) on 15 sides (23%), anterior interosseous artery (AIA) on 9 sides (14%), ulnar artery (UA) on 16 sides (24%), and CIA-UA trunk on 26 sides (39%). None arose from other arteries in the upper limbs. Based on our results and the current theory on vascular development, we conclude that the term 'persistent median artery' must be strictly used for the one that arises from the arteries in the forearm except for the radial artery, and the presence of this ontogenetic remnant can be interpreted as paedogenesis in the human body. We also describe that the increasing trend in the incidence of the median artery since the nineteenth century, as pointed out by a few researchers, may represent 'nearly neutral evolution' at the phenotypic level in human populations.

6.
Zoology (Jena) ; 164: 126160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574691

RESUMO

Squamates exhibit evident diversity in their limb morphology. Gekkotans are a particularly diverse group in this respect. The appearance of toepads in gekkotans usually cooccurs with the reduction or loss of claws. The gecko Tarentola (Phyllodactylidae) shows a unique combination of features among geckos, with toepads, hyperphalangy, and dimorphism of claw expression (claws are retained on digits III and IV, but lost (manus) or strongly reduced (pes) on the remaining digits). Despite being a candidate model for studying embryonic skeletal development of the autopodium, no studies have investigated the autopodial development of the gecko Tarentola in detail. Here, we aim to follow up the development of the autopodial skeleton in T. annularis and T. mauritanica using acid-free double staining. The results indicate that the terminal phalanges of claw-bearing digits III and IV ossify earlier than in the remaining digits. This confirms the differential ossification as a result of claw regression in Tarentola. The strongly reduced second phalanges of digits IV in both the fore- and hindlimbs are the last ossifying phalanges. Such late ossification may precede the evolutionary loss of this phalanx. If this is correct, the autopodia of Tarentola would be an interesting example of both the hyperphalangy in digit I and the process of phalanx loss in digit IV. Delay in ossification of the miniaturised phalanx probably represents an example of paedomorphosis.


Assuntos
Lagartos , Animais , Lagartos/anatomia & histologia , Lagartos/embriologia , Extremidades/anatomia & histologia , Osteogênese
7.
Ecol Evol ; 14(4): e11240, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590547

RESUMO

Neoteny is a developmental strategy wherein an organism reaches sexual maturity without associated adult characteristics. In salamanders, neoteny takes the form of individuals retaining aquatic larval characteristics such as external gills upon maturation. Mole salamanders (Ambystoma) occupy a wide range of habitats and areas across the North American continent, and display examples of non-neotenic, facultatively neotenic and obligate neotenic species, providing high variation for investigating the factors influencing the evolution of neoteny. Here, we use phylogenetic comparative methods to test existing hypotheses that neoteny is associated with elevational and latitudinal distribution, cave-associated isolation, and hybridisation-related polyploidy. We also test if neoteny influences the diversity of habitats a species can occupy, since the restriction to an aquatic life should constrain the availability of different niches. We find that neoteny tends to occur in a narrow latitudinal band between 20-30° North, with particularly narrow latitudinal ranges for obligate compared to facultative neotenic species (16-52° North). We also find that facultatively neotenic species occur at elevations more than twice as high as other species on average, and that species with a higher frequency of neoteny typically have lower habitat diversity. Our results suggest that evolutionary transitions between non-neotenic and facultative neoteny states occur at relatively high and approximately equal rates. Moreover, we estimate that obligate neoteny cannot evolve directly from non-neotenic species (and vice versa), such that facultative neoteny acts as an evolutionary 'stepping stone' to and from obligate neoteny. However, our transition rate estimates suggest that obligate neoteny is lost >4-times faster than it evolves, partly explaining the rarity of obligate species. These results support the hypothesis that low latitudes favour the evolution of neoteny, presumably linked to more stable (aquatic) environments due to reduced seasonality, but once evolved it may constrain the diversity of habitats.

8.
J Plant Res ; 137(5): 697-717, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38407783

RESUMO

Heterochrony acts as a fundamental process affecting the early development of organisms in creating a subtle shift in the timing of initiation or the duration of a developmental process. In flowers this process is linked with mechanical forces that cause changes in the interaction of neighbouring floral organs by altering the timing and rate of initiation of organs. Heterochrony leads to a delay or acceleration of the development of neighbouring primordia, inducing a change in the morphospace of the flowers. As changes in the timing of development may affect organs differently at different stages of development, these shifts eventually lead to major morphological changes such as altered organ positions, fusions, or organ reductions with profound consequences for floral evolution and the diversification of flowers. By concentrating on early developmental stages in flowers it is possible to understand how heterochrony is responsible for shifts in organ position and the establishment of a novel floral Bauplan. However, it remains difficult to separate heterochrony as a process from pattern, as both are intimately linked. Therefore it is essential to connect different patterns in flowers through the process of developmental change.Examples illustrating the importance of heterochronic shifts affecting different organs of the flower are presented and discussed. These cover the transition from inflorescence to flower through the interaction of bracts and bracteoles, the pressure exercised by the perianth on the androecium and gynoecium, the inversed influence of stamens on petals, and the centrifugal influence of carpels on the androecium. Different processes are explored, including the occurrence of obdiplostemony, the onset of common primordia, variable carpel positions, and organ reduction and loss.


Assuntos
Evolução Biológica , Flores , Flores/fisiologia , Flores/crescimento & desenvolvimento , Flores/anatomia & histologia , Fenômenos Biomecânicos
9.
J Anim Ecol ; 93(3): 333-347, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38279640

RESUMO

Actuarial senescence (called 'senescence' hereafter) often shows broad variation at the intraspecific level. Phenotypic plasticity likely plays a central role in among-individual heterogeneity in senescence rate (i.e. the rate of increase in mortality with age), although our knowledge on this subject is still very fragmentary. Polyphenism-the unique sub-type of phenotypic plasticity where several discrete phenotypes are produced by the same genotype-may provide excellent study systems to investigate if and how plasticity affects the rate of senescence in nature. In this study, we investigated whether facultative paedomorphosis influences the rate of senescence in a salamander, Ambystoma mavortium nebulosum. Facultative paedomorphosis, a unique form of polyphenism found in dozens of urodele species worldwide, leads to the production of two discrete, environmentally induced phenotypes: metamorphic and paedomorphic individuals. We leveraged an extensive set of capture-recapture data (8948 individuals, 24 years of monitoring) that were analysed using multistate capture-recapture models and Bayesian age-dependent survival models. Multistate models revealed that paedomorphosis was the most common developmental pathway used by salamanders in our study system. Bayesian age-dependent survival models then showed that paedomorphs have accelerated senescence in both sexes and shorter adult lifespan (in females only) compared to metamorphs. In paedomorphs, senescence rate and adult lifespan also varied among ponds and individuals. Females with good body condition and high lifetime reproductive success had slower senescence and longer lifespan. Late-breeding females also lived longer but showed a senescence rate similar to that of early-breeding females. Moreover, males with good condition had longer lifespan than males with poor body condition, although they had similar senescence rates. In addition, late-breeding males lived longer but, unexpectedly, had higher senescence than early-breeding males. Overall, our work provides one of the few empirical cases suggesting that environmentally cued polyphenism could affect the senescence of a vertebrate in nature, thus providing insights on the ecological and evolutionary consequences of developmental plasticity on ageing.


Assuntos
Ambystoma , Longevidade , Humanos , Masculino , Feminino , Animais , Teorema de Bayes , Urodelos , Reprodução
10.
J Anat ; 244(1): 42-62, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737476

RESUMO

Sturgeons belong to the family Acipenseridae, the most species-rich extant family of Acipenseriformes, a basal actinopterygian group of key importance in assessing the early radiations of the actinopterygians. At the same time, acipenseriforms display unique specializations in the morphology of the snout and jaws which make them a valuable model for studying evolutionary novelties. However, despite a long history of research, the homologies of the snout and the mandibular arch of acipenseriforms remain uncertain preventing further studies on the evolutionary origin of their unique snout and jaw structure, and in particular, of the upper jaw symphysis, the key apomorphy of the group and the preoral snout. In the present study, a detailed description of the upper jaw morphology and development in sturgeons is provided in order to address its composition in terms of the common actinopterygian archetype. Based on the obtained results, the upper jaw of acipenseriforms is assumed to have lost the autopalatine portion, which most likely is represented by the separate cartilages supporting the tentacles. Also, the conventional interpretation of the sturgeon's maxilla as dermopalatine is rejected on the grounds of this bone structure and development. Paedomorphosis is proposed to be the most likely mechanism explaining the evolutionary origin of the upper jaw symphysis and supposed modifications of the snout in sturgeons.


Assuntos
Arcada Osseodentária , Maxila , Animais , Maxila/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Evolução Biológica , Peixes/anatomia & histologia , Articulações , Cartilagem
11.
Rev. bras. entomol ; Rev. bras. entomol;68(4): e20240075, 2024. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1576064

RESUMO

ABSTRACT Xacoxoxotlani chiapensis Ferreira new genus and new species, the second genus of the lampyrid subfamily Chespiritoinae is described from Chiapas, Mexico. The new taxon is diagnosed, illustrated and compared with Chespirito Ferreira, Keller and Branham, 2020. An updated diagnosis of the subfamily Chespiritoinae is provided along with a new identification key and distribution map for the genera and species within this subfamily.

12.
Microbiology (Reading) ; 169(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815535

RESUMO

Microbiomes are major determinants of host growth, development and survival. In amphibians, host-associated bacteria in the skin can inhibit pathogen infection, but many processes can influence the structure and composition of the community. Here we quantified the shifts in skin-associated bacteria across developmental stages in the striped newt (Notophthalmus perstriatus), a threatened salamander species with a complex life history and vulnerable to infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis and ranavirus. Our analyses show that pre-metamorphic larval and paedomorphic stages share similar bacterial compositions, and that the changes in the microbiome coincided with physiological restructuring during metamorphosis. Newts undergoing metamorphosis exhibited microbiome compositions that were intermediate between paedomorphic and post-metamorphic stages, further supporting the idea that metamorphosis is a major driver of host-associated microbes in amphibians. We did not find support for infection-related disruption of the microbiome, though infection replicates were small for each respective life stage.


Assuntos
Microbiota , Urodelos , Animais , Urodelos/microbiologia , Anfíbios/microbiologia , Metamorfose Biológica , Pele/microbiologia , Bactérias/genética , Espécies em Perigo de Extinção
13.
J Anim Ecol ; 92(9): 1815-1827, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353993

RESUMO

Fitness trade-offs are a foundation of ecological and evolutionary theory because trade-offs can explain life history variation, phenotypic plasticity, and the existence of polyphenisms. Using a 32-year mark-recapture dataset on lifetime fitness for 1093 adult Arizona tiger salamanders (Ambystoma mavortium nebulosum) from a high elevation, polyphenic population, we evaluated the extent to which two life history morphs (aquatic paedomorphs vs. terrestrial metamorphs) exhibited fitness trade-offs in breeding and body condition with respect to environmental variation (e.g. climate) and internal state-based variables (e.g. age). Both morphs displayed a similar response to higher probabilities of breeding during years of high spring precipitation (i.e. not indicative of a morph-specific fitness trade-off). There were likely no climate-induced fitness trade-offs on breeding state for the two life history morphs because precipitation and water availability are vital to amphibian reproduction. Body condition displayed a contrasting response for the two morphs that was indicative of a climate-induced fitness trade-off. While metamorphs exhibited a positive relationship with summer snowpack conditions, paedomorphs were unaffected. Fitness trade-offs from summer snowpack are likely due to extended hydroperiods in temporary ponds, where metamorphs gain a fitness advantage during the summer growing season by exploiting resources that are unavailable to paeodomorphs. However, paedomorphs appear to have the overwintering fitness advantage because they consistently had higher body condition than metamorphs at the start of the summer growing season. Our results reveal that climate and habitat type (metamorphs as predominately terrestrial, paedomorphs as fully aquatic) interact to confer different advantages for each morph. These results advance our current understanding of fitness trade-offs in this well-studied polyphenic amphibian by integrating climate-based mechanisms. Our conclusions prompt future studies to explore how climatic variation can maintain polyphenisms and promote life history diversity, as well as the implications of climate change for polyphenisms.


Assuntos
Características de História de Vida , Metamorfose Biológica , Animais , Metamorfose Biológica/fisiologia , Ambystoma , Ecossistema , Evolução Biológica
14.
J Anat ; 243(4): 618-629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37013262

RESUMO

Gekkotans are one of the major clades of squamate reptiles. As one of the earliest-diverging lineages, they are crucial in studying deep-level squamate phylogeny and evolution. Developmental studies can shed light on the origin of many important morphological characters, yet our knowledge of cranial development in gekkotans is very incomplete. Here, we describe the embryonic development of the skull in a parthenogenetic gekkonid, the mourning gecko (Lepidodactylus lugubris), studied using non-acidic double staining and histological sectioning. Our analysis indicates that the pterygoid is the first ossifying bone in the skull, as in almost all other studied squamates, followed closely by the surangular and prearticular. The next to appear are the dentary, frontal, parietal and squamosal. The tooth-bearing upper jaw bones, the premaxilla and maxilla, develop relatively late. In contrast to previous reports, the premaxilla starts ossifying from two distinct centres, reminiscent of the condition observed in diplodactylids and eublepharids. Only a single ossification centre of the postorbitofrontal is observed. Some of the endochondral bones of the braincase (prootic, opisthotic, supraoccipital) and the dermal parasphenoid are the last bones to appear. The skull roof is relatively poorly ossified near the time of hatching, with a large frontoparietal fontanelle still present. Many bones begin ossifying relatively later in L. lugubris than in the phyllodactylid Tarentola annularis, which suggests that its ossification sequence is heterochronic with respect to T. annularis.


Assuntos
Lagartos , Animais , Lagartos/anatomia & histologia , Crânio/anatomia & histologia , Cabeça , Desenvolvimento Embrionário , Pesar
15.
Curr Biol ; 33(11): 2136-2150.e4, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37119816

RESUMO

Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.


Assuntos
Marsupiais , Gravidez , Animais , Feminino , Marsupiais/genética , Marsupiais/anatomia & histologia , Evolução Biológica , Placenta , Mamíferos/genética , Mamíferos/anatomia & histologia , Crânio/anatomia & histologia
16.
Dev Dyn ; 251(6): 934-941, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35443096

RESUMO

Amphibians undergo a variety of post-embryonic transitions (PETr) that are partly governed by thyroid hormone (TH). Transformation into a terrestrial form follows an aquatic larval stage (biphasic) or precedes hatching (direct development). Some salamanders maintain larval characteristics and an aquatic lifestyle into adulthood (paedomorphosis), which obscures the conclusion of their larval period. Paedomorphic axolotls exhibit elevated TH during early development that is concomitant with transcriptional reprogramming and limb emergence. A recent perspective suggested this cryptic TH-based PETr is uncoupled from metamorphosis in paedomorphs and concludes the larval period. This led to their question: "Are paedomorphs actual larvae?". To clarify, paedomorphs are only considered larval in form, even though they possess some actual larval characteristics. However, we strongly agree that events during larval development inform amphibian life cycle evolution. We build upon their perspective by considering the evolution of limb emergence and metamorphosis. Limbless hatchling larval salamanders are generally associated with ponds, while limbed larvae are common to streams and preceded the evolution of direct development. Permian amphibians had limbed larvae, so their PETr was likely uncoupled from metamorphosis, equivalent to most extant biphasic and paedomorphic salamanders. Coupling of these events was likely derived in frogs and direct developing salamanders.


Assuntos
Estágios do Ciclo de Vida , Urodelos , Ambystoma mexicanum , Anfíbios , Animais , Evolução Biológica , Larva , Metamorfose Biológica , Hormônios Tireóideos
17.
J Morphol ; 283(4): 462-501, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35076124

RESUMO

Morphological data sets are misleading in salamander (Caudata) phylogeny due to the relative homoplasy of the dermal skull observed in paedomorphic forms, leading to the trend of excluding morphology when exploring questions of salamander phylogeny. Investigations in caecilians (Gymnophiona) have demonstrated that the inclusion of braincase morphology can rescue morphological phylogenetic analyses and produce topologies congruent with molecular data sets. We scanned 28 species (25 genera) of salamander, representing all 10 families, with high-resolution micro-computed tomography to investigate braincase variation. We describe the morphology of the braincase for all 10 families and distinguish between paedomorphic and metamorphic morphologies. Our results demonstrate a general uniformity amongst metamorphic species with variation largely restricted to the occipito-otic region. A greater range of variation is observed within paedomorphic forms than would be expected when considering the homoplasy of the dermal skull. Obligate paedomorphic forms demonstrate considerably more variation in the anterior braincase than do facultative paedomorphs, which we suggest is evidence of a greater complexity in the evolution and development of these forms than neoteny alone would produce. This raises the question of character independence within morphological data sets and warrants further investigation into the correlation of other characters before morphological data are omitted.


Assuntos
Crânio , Urodelos , Anfíbios/anatomia & histologia , Animais , Evolução Biológica , Humanos , Filogenia , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Urodelos/anatomia & histologia , Microtomografia por Raio-X
18.
J Exp Zool B Mol Dev Evol ; 338(1-2): 87-106, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826199

RESUMO

Heterochrony, defined as a change in the timing of developmental events altering the course of evolution, was first recognized by Ernst Haeckel in 1866. Haeckel's original definition was meant to explain the observed parallels between ontogeny and phylogeny, but the interpretation of his work became a source of controversy over time. Heterochrony took its modern meaning following the now classical work in the 1970-80s by Steven J. Gould, Pere Alberch, and co-workers. Predicted and described heterochronic scenarios emphasize the many ways in which developmental changes can influence evolution. However, while important examples of heterochrony detected with comparative morphological methods have multiplied, the more mechanistic understanding of this phenomenon lagged conspicuously behind. Considering the rapid progress in imaging and molecular tools available now for developmental biologists, this review aims to stress the need to take heterochrony research to the next level. It is time to synchronize the different levels of heterochrony research into a single analysis flow: from studies on organismal-level morphology to cells to molecules and genes, using complementary techniques. To illustrate how to achieve a more comprehensive understanding of phyletic morphological diversification associated with heterochrony, we discuss several recent case studies at various phylogenetic scales that combine morphological, cellular, and molecular analyses. Such a synergistic approach offers to more fully integrate phylogenetic and ontogenetic dimensions of the fascinating evolutionary phenomenon of heterochrony.


Assuntos
Evolução Biológica , Animais , Filogenia
19.
Dev Dyn ; 251(6): 957-972, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33991029

RESUMO

Observations on the ontogeny and diversity of salamanders provided some of the earliest evidence that shifts in developmental trajectories have made a substantial contribution to the evolution of animal forms. Since the dawn of evo-devo there have been major advances in understanding developmental mechanisms, phylogenetic relationships, evolutionary models, and an appreciation for the impact of ecology on patterns of development (eco-evo-devo). Molecular phylogenetic analyses have converged on strong support for the majority of branches in the Salamander Tree of Life, which includes 764 described species. Ancestral reconstructions reveal repeated transitions between life cycle modes and ecologies. The salamander fossil record is scant, but key Mesozoic species support the antiquity of life cycle transitions in some families. Colonization of diverse habitats has promoted phenotypic diversification and sometimes convergence when similar environments have been independently invaded. However, unrelated lineages may follow different developmental pathways to arrive at convergent phenotypes. This article summarizes ecological and endocrine-based causes of life cycle transitions in salamanders, as well as consequences to body size, genome size, and skeletal structure. Salamanders offer a rich source of comparisons for understanding how the evolution of developmental patterns has led to phenotypic diversification following shifts to new adaptive zones.


Assuntos
Evolução Biológica , Urodelos , Animais , Fósseis , Estágios do Ciclo de Vida , Filogenia
20.
Zoological Lett ; 7(1): 14, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34876208

RESUMO

Although paedomorphosis is widespread across salamander families, only two species have ever been documented to exhibit paedomorphosis in Hynobiidae. One of these two exceptional species is Hynobius retardatus in which paedomorphosis was first reported in 1924, in specimens from Lake Kuttara in Hokkaido. This population became extinct after the last observation in 1932; since then, no paedomorphs of this species have been reported anywhere. Here, we report the rediscovery of paedomorphs of this species. Three paedomorph-like male salamanders were collected from a pond in the south Hokkaido in December 2020 and April 2021; in size, these specimens were similar to metamorphosed adults but they still displayed larval features such as external gills and a well-developed caudal fin. An artificial fertilization experiment demonstrated that they were sexually compatible with metamorphosed females, thus, confirming them to be paedomorphs. Future efforts to find additional paedomorphs in this and other populations are required to assess the prevalence of paedomorphosis in H. retardatus and to improve understanding of the ecology and evolution of paedomorphisis in Urodela.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA