Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Bioact Mater ; 36: 455-473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39055352

RESUMO

The development of engineered or modified autologous stem cells is an effective strategy to improve the efficacy of stem cell therapy. In this study, the stemness and functionality of adipose stem cells derived from type 1 diabetic donors (T1DM-ASC) were enhanced by treatment with Cu(II)-baicalein microflowers (Cu-MON). After treatment with Cu-MON, T1DM-ASC showed enhanced expression of the genes involved in the cytokine-cytokine receptor interaction pathway and increased cytokine secretion. Among the top 13 differentially expressed genes between T1DM-ASC and Cu-MON-treated T1DM-ASC (CMTA), some genes were also expressed in HUVEC, Myoblast, Myofibroblast, and Vascular Smooth Muscle cells, inferring the common role of these cell types. In vivo experiments showed that CMTA had the same therapeutic effect as adipose-derived stem cells from non-diabetic donors (ND-ASC) at a 15% cell dose, greatly reducing the treatment cost. Taken together, these findings suggest that Cu-MON promoted angiogenesis by promoting the stemness and functionality of T1DM-ASC and influencing multiple overall repair processes, including paracrine effects.

2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892376

RESUMO

Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.


Assuntos
Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Animais , Doenças Cardiovasculares/terapia , Medicina Regenerativa/métodos , Células-Tronco/metabolismo , Células-Tronco/citologia
3.
Redox Biol ; 75: 103241, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38901103

RESUMO

BACKGROUND: We previously demonstrated that the human amniotic fluid (hAF) from II trimester of gestation is a feasible source of stromal progenitors (human amniotic fluid stem cells, hAFSC), with significant paracrine potential for regenerative medicine. Extracellular vesicles (EVs) separated and concentrated from hAFSC secretome can deliver pro-survival, proliferative, anti-fibrotic and cardioprotective effects in preclinical models of skeletal and cardiac muscle injury. While hAFSC-EVs isolation can be significantly influenced by in vitro cell culture, here we profiled EVs directly concentrated from hAF as an alternative option and investigated their paracrine potential against oxidative stress. METHODS: II trimester hAF samples were obtained as leftover material from prenatal diagnostic amniocentesis following written informed consent. EVs were separated by size exclusion chromatography and concentrated by ultracentrifugation. hAF-EVs were assessed by nanoparticle tracking analysis, transmission electron microscopy, Western Blot, and flow cytometry; their metabolic activity was evaluated by oximetric and luminometric analyses and their cargo profiled by proteomics and RNA sequencing. hAF-EV paracrine potential was tested in preclinical in vitro models of oxidative stress and dysfunction on murine C2C12 cells and on 3D human cardiac microtissue. RESULTS: Our protocol resulted in a yield of 6.31 ± 0.98 × 109 EVs particles per hAF milliliter showing round cup-shaped morphology and 209.63 ± 6.10 nm average size, with relevant expression of CD81, CD63 and CD9 tetraspanin markers. hAF-EVs were enriched in CD133/1, CD326, CD24, CD29, and SSEA4 and able to produce ATP by oxygen consumption. While oxidative stress significantly reduced C2C12 survival, hAF-EV priming resulted in significant rescue of cell viability, with notable recovery of ATP synthesis and concomitant reduction of cell damage and lipid peroxidation activity. 3D human cardiac microtissues treated with hAF-EVs and experiencing H2O2 stress and TGFß stimulation showed improved survival with a remarkable decrease in the onset of fibrosis. CONCLUSIONS: Our results suggest that leftover samples of II trimester human amniotic fluid can represent a feasible source of EVs to counteract oxidative damage on target cells, thus offering a novel candidate therapeutic option to counteract skeletal and cardiac muscle injury.

4.
Mol Biol Rep ; 51(1): 550, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642183

RESUMO

BACKGROUND: The therapeutic efficacy of intra-articular mesenchymal stem cells (MSCs) injection for patients with osteoarthritis (OA) currently exhibits inconsistency, and the underlying mechanism remains elusive. It has been postulated that the immunomodulatory properties and paracrine activity of MSCs might be influenced by the inflammatory micro-environment within osteoarthritic joints, potentially contributing to this observed inconsistency. METHODS: Adipose-derived MSCs (ADSCs) were isolated from SD rats and pre-treated with Toll-like receptor 3 (TLR3) agonist Poly I:C or Toll-like receptor 4 (TLR4) agonist LPS. The pre-treated ADSCs were then co-cultured with IL-1ß-induced osteoarthritic chondrocytes using a Transwell system to analyze the paracrine effect of ADSCs on reversing the osteoarthritic phenotype of chondrocytes. RESULTS: RT-PCR and Western blot analysis revealed that Poly I:C and LPS pre-treatments up-regulated the expression of IL-10 and IL-6 in ADSCs, respectively. Furthermore, only Poly I:C-preconditioned ADSCs significantly promoted proliferation while inhibiting apoptosis in IL-1ß-treated chondrocytes. Additionally, Poly I:C-preconditioned ADSCs downregulated MMP13 expression while upregulating aggrecan and collagen II expression levels in IL-1ß-treated chondrocytes. CONCLUSIONS: TLR3 activation polarizes ADSCs into an immunomodulatory phenotype distinct from TLR4 activation, exerting differential effects on reversing the osteoarthritic phenotype of chondrocytes; thus indicating that MSCs' paracrine effect regulated by TLRs signaling impacts the efficacy of intra-articular MSCs injection.


Assuntos
Condrócitos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Condrócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Receptores Toll-Like/metabolismo , Fenótipo , Poli I/metabolismo , Poli I/farmacologia
5.
Mater Today Bio ; 25: 101001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420144

RESUMO

Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.

6.
Stem Cell Res Ther ; 14(1): 327, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957675

RESUMO

Chemotherapy can cause ovarian dysfunction and infertility since the ovary is extremely sensitive to chemotherapeutic drugs. Apart from the indispensable role of the ovary in the overall hormonal milieu, ovarian dysfunction also affects many other organ systems and functions including sexuality, bones, the cardiovascular system, and neurocognitive function. Although conventional hormone replacement therapy can partly relieve the adverse symptoms of premature ovarian insufficiency (POI), the treatment cannot fundamentally prevent deterioration of POI. Therefore, effective treatments to improve chemotherapy-induced POI are urgently needed, especially for patients desiring fertility preservation. Recently, mesenchymal stem cell (MSC)-based therapies have resulted in promising improvements in chemotherapy-induced ovary dysfunction by enhancing the anti-apoptotic capacity of ovarian cells, preventing ovarian follicular atresia, promoting angiogenesis and improving injured ovarian structure and the pregnancy rate. These improvements are mainly attributed to MSC-derived biological factors, functional RNAs, and even mitochondria, which are directly secreted or indirectly translocated with extracellular vesicles (microvesicles and exosomes) to repair ovarian dysfunction. Additionally, as a novel source of MSCs, menstrual blood-derived endometrial stem cells (MenSCs) have exhibited promising therapeutic effects in various diseases due to their comprehensive advantages, such as periodic and non-invasive sample collection, abundant sources, regular donation and autologous transplantation. Therefore, this review summarizes the efficacy of MSCs transplantation in improving chemotherapy-induced POI and analyzes the underlying mechanism, and further discusses the benefit and existing challenges in promoting the clinical application of MenSCs in chemotherapy-induced POI.


Assuntos
Antineoplásicos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Gravidez , Humanos , Feminino , Transplante de Células-Tronco Mesenquimais/métodos , Atresia Folicular , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia , Antineoplásicos/efeitos adversos
8.
JACC Basic Transl Sci ; 8(9): 1081-1097, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37791312

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce epicardial adipose tissue (EAT) in humans, enhancing cardioprotective effects on heart failure and atrial fibrillation. We investigated the direct effect of the SGLT2 inhibitor empagliflozin on human primary epicardial adipocytes and preadipocytes. SGLT2 is primarily expressed in human preadipocytes in the EAT. The expression levels of SGLT2 significantly diminished when the preadipocytes were terminally differentiated. Adipogenesis of preadipocytes was attenuated by empagliflozin treatment without affecting cell proliferation. The messenger RNA levels and secreted protein levels of interleukin 6 and monocyte chemoattractant protein 1 were significantly decreased in empagliflozin-treated adipocytes. Coculture of human induced pluripotent stem cell-derived atrial cardiomyocytes and adipocytes pretreated with or without empagliflozin revealed that empagliflozin significantly suppressed reactive oxygen species. IL6 messenger RNA expression in human EAT showed significant clinically relevant associations. Empagliflozin suppresses human epicardial preadipocyte differentiation/maturation, likely inhibiting epicardial adipogenesis and improving the paracrine secretome profile of EAT, particularly by regulating IL6 expression.

9.
ACS Appl Mater Interfaces ; 15(31): 37193-37204, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37493513

RESUMO

Mesenchymal stem cell (MSC)-based therapy has emerged as a promising strategy for the treatment of spinal cord injury (SCI). However, the hostile microenvironment of SCI, which can adversely affect the survival and paracrine effect of the implanted MSCs, severely limits the therapeutic efficacy of this approach. Here, we report on a ceria nanozyme-integrated thermoresponsive in situ forming hydrogel (CeNZ-gel) that can enable dual enhancement of MSC viability and paracrine effect, leading to highly efficient spinal cord repair. The sol-gel transition property of the CeNZ-gel at body temperature ensures uniform coverage of the hydrogel in injured spinal cord tissues. Our results demonstrate that the CeNZ-gel significantly increases the viability of transplanted MSCs in the microenvironment by attenuating oxidative stress and, more importantly, promotes the secretion of angiogenic factors from MSCs by inducing autophagy of MSCs. The synergy between the oxidative stress-relieving effect of CeNZs and the paracrine effect of MSCs accelerates angiogenesis, nerve repair, and motor function recovery after SCI, providing an efficient strategy for MSC-based SCI therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Humanos , Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Traumatismos da Medula Espinal/terapia
10.
J Hazard Mater ; 457: 131750, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315416

RESUMO

During pregnancy, the human body is quite vulnerable to external stimuli. Zinc oxide nanoparticles (ZnO-NPs) are widely used in daily life, and they enter the human body via environmental or biomedical exposure, thus having potential risks. Although accumulating studies have demonstrated the toxic effects of ZnO-NPs, few studies have addressed the effect of prenatal ZnO-NP exposure on fetal brain tissue development. Here, we systematically studied ZnO-NP-induced fetal brain damage and the underlying mechanism. Using in vivo and in vitro assays, we found that ZnO-NPs could cross the underdeveloped bloodbrain barrier and enter fetal brain tissue, where they could be endocytosed by microglia. ZnO-NP exposure impaired mitochondrial function and induced autophagosome overaccumulation by downregulation of Mic60, thus inducing microglial inflammation. Mechanistically, ZnO-NPs increased Mic60 ubiquitination by activating MDM2, resulting in imbalanced mitochondrial homeostasis. Inhibition of Mic60 ubiquitination by MDM2 silencing significantly attenuated the mitochondrial damage induced by ZnO-NPs, thereby preventing autophagosome overaccumulation and reducing ZnO-NP-mediated inflammation and neuronal DNA damage. Our results demonstrate that ZnO-NPs are likely to disrupt mitochondrial homeostasis, inducing abnormal autophagic flux and microglial inflammation and secondary neuronal damage in the fetus. We hope the information provided in our study will improve the understanding of the effects of prenatal ZnO-NP exposure on fetal brain tissue development and draw more attention to the daily use of and therapeutic exposure to ZnO-NPs among pregnant women.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Feminino , Gravidez , Mitofagia , Óxido de Zinco/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Microglia/metabolismo , Regulação para Cima , Nanopartículas/toxicidade , Ubiquitinação , Feto , Inflamação/induzido quimicamente , Dano ao DNA , Proteínas Proto-Oncogênicas c-mdm2
11.
Cell Tissue Res ; 393(2): 217-228, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266728

RESUMO

Mesenchymal stem cells (MSCs) have been known as a reliable and effective source to repair damaged tissues. The differentiation and self-renewal ability, easy access, immune system modulation capability, and important role in the process of repairing wounds have caused using these cells extensively in wound healing. In this review study, the role of MSCs is debated about different diseases especially in repairing skin wounds. This review article was obtained from 75 basic and trial articles on the PubMed, Google Scholar, and Clinical Trials databases between 2000 and 2022. MSCs are capable of migrating to the wound site and are effective in all stages of wound healing. These cells differentiate into skin cells and also inhibit inflammatory responses, proliferation, and differentiation cells through paracrine messages. They stimulate locally resident precursors, leading to angiogenesis, epithelial regeneration, and granular tissue formation. During maturation stages, these cells decrease fibrosis tissue formation and wound contraction and increase collagen expression and wound tensile strength. The molecular factors of the lesion site change function of these cells and cause MSCs to create a wound healing microenvironment instead of a fibrotic microenvironment. Currently, significant advances have been achieved in the delivery of MSCs to wound sites. These cells are injected intravenously or intradermally, with or without a scaffold. They are also used in the form of spray or hydrogels. Furthermore, the extracellular vesicles and the synergistic environment of these cells alone are effective. Forthcoming studies could lead to more effective treatment strategies for the use of MSCs in wound healing.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Cicatrização/fisiologia , Pele/patologia , Células-Tronco , Colágeno/metabolismo , Fibrose
12.
Stem Cell Res Ther ; 14(1): 146, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248536

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most severe complications of diabetes mellitus, which is characterized by early occurrence of albuminuria and end-stage glomerulosclerosis. Senescence and autophagy of podocytes play an important role in DN development. Human umbilical cord-derived mesenchymal stem cells (hucMSCs) have potential in the treatment of diabetes and its complications. However, the role of hucMSCs in the treatment of DN and the underlying mechanism remain unclear. METHODS: In vivo, a streptozotocin-induced diabetic male Sprague Dawley rat model was established to determine the renoprotective effect of hucMSCs on DN by biochemical analysis, histopathology, and immunohistochemical staining of renal tissues. And the distribution of hucMSCs in various organs in rats within 168 h was analyzed. In vitro, CCK8 assay, wound healing assay, and ß-galactosidase staining were conducted to detect the beneficial effects of hucMSCs on high glucose-induced rat podocytes. Real-time PCR and western blot assays were applied to explore the mechanism of action of hucMSCs. RESULTS: The in vivo data revealed that hucMSCs were distributed into kidneys and significantly protected kidneys from diabetic damage. The in vitro data indicated that hucMSCs improved cell viability, wound healing, senescence of the high glucose-damaged rat podocytes through a paracrine action mode. Besides, the altered expressions of senescence-associated genes (p16, p53, and p21) and autophagy-associated genes (Beclin-1, p62, and LC3) were improved by hucMSCs. Mechanistically, hucMSCs protected high glucose-induced injury in rat podocytes by activating autophagy and attenuating senescence through the AMPK/mTOR pathway. CONCLUSIONS: In conclusion, hucMSCs might be a promising therapeutic strategy for the clinical treatment of DN-induced renal damages.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células-Tronco Mesenquimais , Ratos , Humanos , Masculino , Animais , Ratos Sprague-Dawley , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Injeções Intravenosas , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Autofagia , Cordão Umbilical/metabolismo
13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902165

RESUMO

Myocardial infarction (MI) is a severe disease with high mortality worldwide. However, regenerative approaches remain limited and with poor efficacy. The major difficulty during MI is the substantial loss of cardiomyocytes (CMs) with limited capacity to regenerate. As a result, for decades, researchers have been engaged in developing useful therapies for myocardial regeneration. Gene therapy is an emerging approach for promoting myocardial regeneration. Modified mRNA (modRNA) is a highly potential delivery vector for gene transfer with its properties of efficiency, non-immunogenicity, transiency, and relative safety. Here, we discuss the optimization of modRNA-based therapy, including gene modification and delivery vectors of modRNA. Moreover, the effective of modRNA in animal MI treatment is also discussed. We conclude that modRNA-based therapy with appropriate therapeutical genes can potentially treat MI by directly promoting proliferation and differentiation, inhibiting apoptosis of CMs, as well as enhancing paracrine effects in terms of promoting angiogenesis and inhibiting fibrosis in heart milieu. Finally, we summarize the current challenges of modRNA-based cardiac treatment and look forward to the future direction of such treatment for MI. Further advanced clinical trials incorporating more MI patients should be conducted in order for modRNA therapy to become practical and feasible in real-world treatment.


Assuntos
Técnicas de Transferência de Genes , Infarto do Miocárdio , Animais , RNA Mensageiro/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Terapia Genética
14.
Reprod Sci ; 30(5): 1482-1494, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36380137

RESUMO

The rate of infertility has globally increased in recent years for a variety of reasons. One of the main causes of infertility in men is azoospermia that is defined by the absence of sperm in the ejaculate and classified into two categories: obstructive azoospermia and non-obstructive azoospermia. In non-obstructive azoospermia, genital ducts are not obstructed, but the testicles do not produce sperm at all, due to various reasons. Non-obstructive azoospermia in most cases has no therapeutic options other than assisted reproductive techniques, which in most cases require sperm donors. Here we discuss cell-based therapy approaches to restore fertility in men with non-obstructive azoospermia including cell-based therapies of non-obstructive azoospermia using regenerative medicine and cell-based therapies of non-obstructive azoospermia by paracrine and anti-inflammatory pathway, technical and ethical challenges for using different cell sources and alternative options will be described, and then the more effectual approaches will be mentioned as future trends.


Assuntos
Azoospermia , Humanos , Masculino , Azoospermia/terapia , Azoospermia/etiologia , Recuperação Espermática , Sêmen , Testículo , Técnicas de Reprodução Assistida/efeitos adversos
15.
Regen Biomater ; 9: rbab078, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35702349

RESUMO

Autologous chondrocytes (C cells) are effective sources of cell therapy for engineering cartilage tissue to repair chondral defects, such as degenerative arthritis. The expansion of cells with C cell characteristics has become a major challenge due to inadequate donor sites and poor proliferation of mature C cells. The perichondrial progenitor cells (P cells) from the cambium layer of the perichondrium possessed significantly higher mesenchymal stem cell markers than C cells. In the transwell co-culture system, P cells increased the passaging capacity of C cells from P6 to P9, and the cell number increased 128 times. This system increased the percentage of Alcian blue-positive C cells from 40% in P6 to 62% in P9, contributing about 198 times more Alcian blue-positive C cells than the control group. C cells co-cultured with P cells also exhibited higher proliferation than C cells cultured with P cell-conditioned medium. Similar results were obtained in nude mice that were subcutaneously implanted with C cells, P cells or a mixture of the two cell types, in which the presence of both cells enhanced neocartilage formation in vivo. In aggregate, P cells enhanced the proliferation of C cells in a dose-dependent manner and prolonged the longevity of mature C cells for clinical applications.

16.
Artif Cells Nanomed Biotechnol ; 50(1): 49-58, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35188030

RESUMO

An in-vitro model of human bone marrow mesenchymal stem cells (hBM-MSCs) myogenic commitment by synergic effect of a differentiation media coupled with human primary skeletal myoblasts (hSkMs) co-culture was developed adopting both conventional static co-seeding and perfused culture systems. Static co-seeding provided a notable outcome in terms of gene expression with a significant increase of Desmin (141-fold) and Myosin heavy chain II (MYH2, 32-fold) at day 21, clearly detected also by semi-quantitative immunofluorescence. Under perfusion conditions, myogenic induction ability of hSkMs on hBM-MSCs was exerted by paracrine effect with an excellent gene overexpression and immunofluorescence detection of MYH2 protein; furthermore, due to the dynamic cell culture in separate wells, western blot data were acquired confirming a successful cell commitment at day 14. A significant increase of anti-inflammatory cytokine gene expression, including IL-10 and IL-4 (15-fold and 11-fold, respectively) at day 14, with respect to the pro-inflammatory cytokines IL-12A (7-fold at day 21) and IL-1ß (1.4-fold at day 7) was also detected during dynamic culture, confirming the immunomodulatory activity of hBM-MSCs along with commitment events. The present study opens interesting perspectives on the use of dynamic culture based on perfusion as a versatile tool to study myogenic events and paracrine cross-talk compared to the simple co-seeding static culture.


Assuntos
Células-Tronco Mesenquimais , Mioblastos , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Mioblastos/metabolismo
17.
Pharmaceutics ; 14(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35214179

RESUMO

Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies.

18.
J Dent Sci ; 17(1): 276-283, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028048

RESUMO

BACKGROUND/PURPOSE: SHED and DPSC have stem cell regenerative potential, but comparative research on their cytokine profile is rare. This study aimed to investigate and compare cytokine profiles secreted from stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs). MATERIALS AND METHODS: SHED-conditioned medium (CM) and DPSC-CM were extracted using seven primary and permanent teeth each. Cytokine membrane array was performed for each CM to quantify and compare the secretomes of 120 cytokines. Enzyme-linked immunosorbent assay, immunocytochemistry, and immunohistochemistry analysis were performed to demonstrate cytokine membrane array analysis. RESULTS: Significant differences were observed in the expression levels of 68 cytokines-27 and 41 cytokines were 1.3-fold more strongly expressed in SHED-CM and DPSC-CM, respectively. Cytokines involved in immunomodulation, odontogenesis and osteogenesis were more strongly expressed in SHED-CM. Cytokines involved in angiogenesis were detected more strongly in DPSCs-CM. SHED and DPSCs have distinctive cytokine profiles and characteristics in terms of their stem cell regenerative potential. CONCLUSION: These observations suggest that SHED may have a better cytokine profile related to inflammatory, proliferative, osteogenic, and odontogenic potential.

19.
Front Cell Dev Biol ; 9: 762335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790669

RESUMO

Bone regeneration is a delicate physiological process. Non-union and delayed fracture healing remains a great challenge in clinical practice nowadays. Bone and fat hold a close relationship to remain balanced through hormones and cytokines. Adiponectin is a well-known protein to maintain the hemostasis, which may be an interesting target for fracture healing. Herein, we provided a facile and efficient method to obtain high-purity and high-yield recombinant human adiponectin (ADPN). The biocompatibility and the pharmaceutical behaviors were evaluated in Sprague-Dawley rats. The paracrine effects of adiponectin on bone fracture healing were investigated with a rat tibia fracture model via intrabone injection. Significantly accelerated bone healing was observed in the medulla injection group, indicating the paracrine effects of adiponectin could be potentially utilized for clinical treatments. The underlying mechanism was primarily assessed, and the expression of osteogenic markers, including bone morphogenic protein 2, alkaline phosphatase, and osteocalcin, along with adiponectin receptor 1 (AdipoR1), was markedly increased at the fracture site. The increased bone healing of ADPN treatment may result from both enhanced osteogenic proliferation as well as differentiation. Cell experiments confirmed that the expression of osteogenesis markers increased significantly in ADPN treatment groups, while it decreased when the expression of AdipoR1 was knocked down by siRNA. Our study provided a feasible and efficacious way for bone fracture treatment with local administration of ADPN, which could be rapidly translated into the clinics.

20.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769446

RESUMO

The therapeutic potential of the dental pulp stem (DSC) cell-derived secretome, consisting of various biomolecules, is undergoing intense research. Despite promising in vitro and in vivo studies, most DSC secretome-based therapies have not been implemented in human medicine because the paracrine effect of the bioactive factors secreted by human dental pulp stem cells (hDPSCs) and human exfoliated deciduous teeth (SHEDs) is not completely understood. In this review, we outline the current data on the hDPSC- and SHED-derived secretome as a potential candidate in the regeneration of bone, cartilage, and nerve tissue. Published reports demonstrate that the dental MSC-derived secretome/conditional medium may be effective in treating neurodegenerative diseases, neural injuries, cartilage defects, and repairing bone by regulating neuroprotective, anti-inflammatory, antiapoptotic, and angiogenic processes through secretome paracrine mechanisms. Dental MSC-secretomes, similarly to the bone marrow MSC-secretome activate molecular and cellular mechanisms, which determine the effectiveness of cell-free therapy. Many reports emphasize that dental MSC-derived secretomes have potential application in tissue-regenerating therapy due to their multidirectional paracrine effect observed in the therapy of many different injured tissues.


Assuntos
Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Doenças Neurodegenerativas/terapia , Medicina Regenerativa/métodos , Secretoma/citologia , Células-Tronco/citologia , Polpa Dentária/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA