Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Adv Exp Med Biol ; 1454: 203-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008267

RESUMO

Paragonimiasis is a zoonotic disease caused by lung flukes of the genus Paragonimus. Humans usually become infected by eating freshwater crabs or crayfish containing encysted metacercariae of these worms. However, an alternative route of infection exists: ingestion of raw meat from a mammalian paratenic host. Adult worms normally occur in pairs in cysts in the lungs from which they void their eggs via air passages. The pulmonary form is typical in cases of human infection due to P. westermani, P. heterotremus, and a few other species. Worms may occupy other sites in the body, notably the brain, but lung flukes have made their presence felt in almost every organ. Ectopic paragonimiasis is particularly common when infection is due to members of the P. skrjabini complex. Human paragonimiasis occurs primarily in the tropics and subtropics of Asia, Africa, and the Americas, with different species being responsible in different areas (Table 6.1).


Assuntos
Paragonimíase , Paragonimus , Paragonimíase/parasitologia , Humanos , Animais , Paragonimus/patogenicidade , Paragonimus/fisiologia , Zoonoses/parasitologia , Zoonoses/transmissão
2.
J Wildl Dis ; 60(4): 874-885, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39021050

RESUMO

Toxoplasma gondii, a parasitic protozoan, may infect most warm-blooded animals, including humans and carnivores. Our study focused on alien-invasive American minks (Neogale vison) and domestic cats (Felis catus) in the Valdivian Temperate Rainforest, Chile. The main goal was to investigate the relationship between their dietary habits and T. gondii exposure in the Valdivia River watershed. To detect T. gondii exposure, blood serum samples from 49 domestic cats and 40 American minks were analyzed using an ELISA, and stable isotope analysis of δ15N and δ13C from vibrissae was performed to determine the dietary habits of both species. Relationships between T. gondii exposure and dietary habits were explored using generalized linear mixed-effects models. American minks that were T. gondii seropositive exhibited a broader prey range compared to seropositive domestic cats, with minimal dietary overlap between the two groups. Exposure of domestic cats to T. gondii had no significant association with any isotope value or prey item in their diet. In American minks, we found a positive and significant association between the proportion of Domestic chicken (Gallus gallus domesticus) in the diet and high δ15N values with T. gondii exposure. This suggests that domestic species prey related to anthropogenic areas, and the consumption of high-trophic-level prey, may contribute to T. gondii exposure in American minks. Conversely, contrary to previous hypotheses, consumption of rodents showed no significant association with T. gondii exposure in either species. Our findings emphasize the importance of further research to investigate trophic interactions in the transmission dynamics of T. gondii in the Valdivian Temperate Rainforest.


Assuntos
Doenças do Gato , Toxoplasma , Toxoplasmose Animal , Animais , Toxoplasmose Animal/epidemiologia , Chile/epidemiologia , Gatos , Doenças do Gato/parasitologia , Doenças do Gato/epidemiologia , Doenças do Gato/sangue , Comportamento Alimentar , Floresta Úmida , Feminino , Dieta/veterinária , Masculino
3.
Front Biosci (Landmark Ed) ; 29(3): 124, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538283

RESUMO

BACKGROUND: Toxocara canis (T. canis) is a helminth parasite of zoonotic and veterinary health significance that causes the disease known as Toxocariasis. This disease has been associated with conditions of poverty, especially in tropical climate zones throughout the world. Although it rarely causes important clinical manifestations, T. canis can lead to blindness, meningoencephalitis, or other nervous manifestations in humans. Moreover, some studies show its importance in the development of tumor growth, which have been associated with the parasite's ability to modulate the host's immune response. While different studies have evaluated the immune response during this disease, currently, there are no studies where the infection is analyzed from the perspective of sexual dimorphism. METHODS: To evaluate sex differences in susceptibility, we analyzed lesions and parasite loads in lung and liver at 7 days post-infection. In addition, immune cell subpopulations were analyzed in spleen, mesenteric and peripheral lymph nodes. Finally, the production of cytokines and specific antibodies were determined in the serum. Statical analyses were performed using a Two-way ANOVA and a post-hoc Bonferroni multiple comparison test. RESULTS: Female rats had a higher number of larvae in the liver, while male rats had them in the lungs. The percentages of immune cells were evaluated, and in most cases, no significant differences were observed. Regarding the cytokines production, infection can generate a decrease in Th1 such as IL-1ß in both sexes and IL-6 only in females. In the case of Th2, IL-4 increases only in infected males and IL-5 increases in males while decreasing in females due to the effect of infection. IL-10 also decreases in both sexes as a consequence of the infection, and TGF-ß only in females. Finally, the infection generates the production of antibodies against the parasite, however, their quantity is lower in females. CONCLUSIONS: This study demonstrates that T. canis infection is dimorphic and affects females more than males. This is due to a polarization of the inadequate immune response, which is reflected as a higher parasite load in this sex.


Assuntos
Toxocara canis , Toxocaríase , Humanos , Feminino , Ratos , Masculino , Animais , Toxocaríase/parasitologia , Toxocaríase/patologia , Toxocara canis/fisiologia , Caracteres Sexuais , Citocinas , Imunidade
4.
J Parasitol ; 108(5): 423-434, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197730

RESUMO

The acanthocephalan Neoechinorhynchus emydis has a complex life cycle and infects turtle, ostracod, and snail hosts. However, little information is available on the seasonal distribution or the effects of N. emydis on freshwater snail hosts. To address this, we examined the seasonal distribution and melanization of acanthocephalans in Planorbella cf. Planorbella trivolvis snails from a single location in north-central Oklahoma. Seasonally, prevalence of N. emydis was 0% during the winter, increased to 50% during the summer, and declined to 17% in the fall. Mean abundance exhibited more variation but generally followed a similar pattern as prevalence. More important, all acanthocephalans located within the head/foot region of snail hosts contained melaninlike pigment surrounding each worm, suggesting that snails were mounting an immunological reaction to infections with N. emydis. Snail shell diameter was greatest during the fall and decreased during the winter, indicating that larger or older snails were dying during the winter. However, because field-collected snails were commonly infected with trematodes, and snail size varied significantly with season, it was unclear whether the observed seasonal dynamics of acanthocephalan infections were a result of snail mortality resulting from snail age, parasitic infections, or a combination of factors. To control for these factors, we exposed laboratory-reared Planorbella cf. P. trivolvis snails to naturally infected ostracods in field cages for 5-wk intervals during the winter, spring, and summer. Data from snail-cage infections were consistent with the seasonal field survey such that N. emydis infections were highest in the summer (20%) and lowest (0%) in the winter, suggesting that snails were not ingesting infected ostracods during the winter. However, fewer of our laboratory-reared snails survived in field cages during winter than during spring and summer, suggesting that snails may die more often during harsh winter conditions. Finally, we conducted a laboratory survival experiment by testing the life span and egg production of field-collected snails of various sizes that were naturally infected with acanthocephalans or trematodes or both. Our snail-survival experiment indicated that snail size but not infection status with acanthocephalans or trematodes affected snail survival, with larger snails surviving a shorter amount of time than smaller snails. In addition, snails infected with trematodes laid significantly fewer eggs compared with uninfected snails or snails infected with acanthocephalans. However, we found no significant difference in the number of eggs laid by acanthocephalan-infected and uninfected snails. Although other abiotic factors still need evaluation, we suggest that the occurrence of acanthocephalans in snails throughout the year may be partially influenced by the abundance of infected ostracods that snails may be ingesting and snail population fluctuations during the year.


Assuntos
Acantocéfalos , Trematódeos , Animais , Crustáceos , Água Doce , Oklahoma/epidemiologia , Estações do Ano , Caramujos
5.
Ecol Monogr ; 92(2): e1506, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35865510

RESUMO

We explored whether parasites are important in kelp forests by examining their effects on a high-quality, high-resolution kelp-forest food web. After controlling for generic effects of network size, parasites affected kelp-forest food web structure in some ways consistent with other systems. Parasites increased the trophic span of the web, increasing top predator vulnerability and the longest chain length. Unique links associated with parasites, such as concomitant predation (consumption of parasites along with their hosts by predators) increased the frequency of network motifs involving mutual consumption and decreased niche contiguity of free-living species. However, parasites also affected kelp-forest food web structure in ways not seen in other systems. Kelp-forest parasites are richer and more specialized than other systems. As a result, parasites reduced diet generality and decreased connectance in the kelp forest. Although mutual consumption motifs increased in frequency, this motif type was still a small fraction of all possible motifs, so their increase in frequency was not enough to compensate for the decrease in connectance caused by adding many specialist parasite species.

6.
Parasitology ; 149(10): 1262-1285, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35591777

RESUMO

Foodborne trematodes (FBT) of public health significance include liver flukes (Clonorchis sinensis, Opisthorchis viverrini, O. felineus, Fasciola hepatica and F. gigantica), lung flukes (Paragonimus westermani and several other Paragonimus spp.) and intestinal flukes, which include heterophyids (Metagonimus yokogawai, Heterophyes nocens and Haplorchis taichui), echinostomes (Echinostoma revolutum, Isthmiophora hortensis, Echinochasmus japonicus and Artyfechinostomum malayanum) and miscellaneous species, including Fasciolopsis buski and Gymnophalloides seoi. These trematode infections are distributed worldwide but occur most commonly in Asia. The global burden of FBT diseases has been estimated at about 80 million, however, this seems to be a considerable underestimate. Their life cycle involves a molluscan first intermediate host, and a second intermediate host, including freshwater fish, crustaceans, aquatic vegetables and freshwater or brackish water gastropods and bivalves. The mode of human infection is the consumption of the second intermediate host under raw or improperly cooked conditions. The major pathogenesis of C. sinensis and Opisthorchis spp. infection includes inflammation of the bile duct which leads to cholangitis and cholecystitis, and in a substantial number of patients, serious complications, such as liver cirrhosis and cholangiocarcinoma, may develop. In lung fluke infections, cough, bloody sputum and bronchiectasis are the most common clinical manifestations. However, lung flukes often migrate to extrapulmonary sites, including the brain, spinal cord, skin, subcutaneous tissues and abdominal organs. Intestinal flukes can induce inflammation in the intestinal mucosa, and they may at times undergo extraintestinal migration, in particular, in immunocompromised patients. In order to control FBT infections, eating foods after proper cooking is strongly recommended.


Assuntos
Echinostoma , Fasciolíase , Heterophyidae , Trematódeos , Infecções por Trematódeos , Animais , Humanos , Inflamação , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária
7.
Parasitology ; : 1-13, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35481457

RESUMO

Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host­parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.

8.
Animals (Basel) ; 12(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327107

RESUMO

Toxocara cati is a common parasite of wild and domestic felines, and presents a cosmopolitan distribution. Adult parasites localize in the gut of the definitive host giving rise to the infection, which usually runs asymptomatic. These worms produce eggs that are excreted with feces into the environment, where they become a source of infection for paratenic hosts, such as mammals, birds, and invertebrates. In this brief communication, we report the detection of T. cati larvae in a common buzzard (Buteo buteo) and a red kite (Milvus milvus), in the Basilicata Region of Italy. This result may be important to define new pathways of spread and survival of T. cati in the wild.

9.
Parasitol Int ; 86: 102474, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34597760

RESUMO

We found juveniles of Paragonimus in the urinary bladder of a Japanese toad (Bufo japonicus formosus) captured in Kyoto. These were molecularly identified as Paragonimus skrjabini miyazakii Kamo, Nishida, Hatsushika et Tomimura 1961. This is the first report of P. s. miyazakii found in anuran hosts in Japan, indicating that anurans can be paratenic hosts of P. s. miyazakii, as is also the case for Paragonimus skrjabini skrjabini in China. This finding suggests that definitive hosts of P. s. miyazakii can be infected by eating not only crabs or mammal paratenic hosts, but also anurans.


Assuntos
Bufonidae , Paragonimíase/veterinária , Paragonimus/isolamento & purificação , Bexiga Urinária/parasitologia , Animais , Japão , Masculino , Paragonimíase/parasitologia
10.
J Parasitol ; 107(5): 739-761, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546335

RESUMO

The role of invertebrates in some acanthocephalan life cycles is unclear because juvenile acanthocephalans are difficult to identify to species using morphology. Most reports suggest acanthocephalans from turtle definitive hosts use ostracods as intermediate hosts and snails as paratenic hosts. However, laboratory studies of the life cycle suggest that ostracods and snails are both required hosts in the life cycle. To elucidate the role of ostracods and snails in acanthocephalan life cycles better, we collected 558 freshwater snails of 2 species, including Planorbella cf. Planorbella trivolvis and Physa acuta, from 23 wetlands in Oklahoma, U.S.A., and examined them for acanthocephalan infections. Additionally, we examined 37,208 ostracods of 4 species, Physocypria sp. (morphotype 1), Cypridopsis sp., Stenocypris sp., and Physocypria sp. (morphotype 2) for juvenile acanthocephalans from 2 wetlands in Oklahoma. Juvenile acanthocephalans were morphologically characterized, and the complete internal transcribed spacer (ITS) region of nuclear rDNA was sequenced from acanthocephalans infecting 11 ostracod and 13 snail hosts. We also sampled 10 red-eared slider turtles, Trachemys scripta elegans, and 1 common map turtle, Graptemys geographica, collected from Oklahoma, Arkansas, and Texas and recovered 1,854 adult acanthocephalans of 4 species. The ITS of 17 adult acanthocephalans of 4 species from turtle hosts were sequenced and compared to juvenile acanthocephalan sequences from ostracod and snail hosts from this study and GenBank to determine conspecificity. Of the 23 locations sampled for snails, 7 (30%) were positive for juvenile acanthocephalans in the genus Neoechinorhynchus. The overall prevalence and mean intensity of acanthocephalans in Planorbella cf. P. trivolvis and P. acuta were 20% and 2 (1-6) and 2% and 1 (1), respectively. In contrast, only 1 of 4 species of ostracods, Physocypria sp. (morphotype 1), was infected with larval/juvenile Neoechinorhynchus spp. with an overall prevalence of 0.1% and a mean intensity of 1 (1-2). Although 4 species of acanthocephalans infected turtle definitive hosts, including Neoechinorhynchus chrysemydis, Neoechinorhynchus emydis, Neoechinorhynchus emyditoides, and Neoechinorhynchus pseudemydis, all the ITS sequences from cystacanths infecting snail hosts were conspecific with N. emydis. In contrast, the ITS sequences from larval/juvenile acanthocephalans from ostracods were conspecific with 2 species of acanthocephalans from turtles (N. emydis and N. pseudemydis) and 1 species of acanthocephalan from fish (Neoechinorhynchus cylindratus). These results indicate that N. emydis infects freshwater snails, whereas other species of Neoechinorhynchus appear not to infect snail hosts. We document new ostracod and snail hosts for Neoechinorhynchus species, including the first report of an ostracod host for N. pseudemydis, and we provide novel molecular barcodes that can be used to determine larva, juvenile, and adult conspecificity of Neoechinorhynchus species.


Assuntos
Acantocéfalos/genética , Crustáceos/parasitologia , Caramujos/parasitologia , Tartarugas/parasitologia , Acantocéfalos/anatomia & histologia , Acantocéfalos/isolamento & purificação , Acantocéfalos/patogenicidade , Animais , DNA de Helmintos/química , DNA de Helmintos/isolamento & purificação , Feminino , Água Doce , Masculino , Estações do Ano , Análise Espacial
11.
Int J Parasitol Parasites Wildl ; 15: 231-237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34189031

RESUMO

Parasitic nematodes in the genus Dracunculus have a complex life cycle that requires more than one host species in both aquatic and terrestrial habitats. The most well-studied species, Dracunculus medinensis, is the causative agent of human Guinea worm disease (dracunculiasis). There are several other Dracunculus species that infect non-human animals, primarily wildlife (reptiles and mammals). The classic route of D. medinensis transmission to humans is through the ingestion of water containing the intermediate host, a cyclopoid copepod, infected with third-stage larvae (L3s). However, many animal hosts (e.g., terrestrial snakes, dogs) of other Dracunculus sp. appear unlikely to ingest a large number of copepods while drinking. Therefore, alternative routes of infection (e.g., paratenic or transport hosts) may facilitate Dracunculus transmission to these species. To better understand the role of paratenic and transport hosts in Dracunculus transmission to animal definitive hosts, we compared copepod ingestion rates for aquatic species (fish, frogs [tadpoles and adults], and newts) which may serve as paratenic or transport hosts. We hypothesized that fish would consume more copepods than amphibians. Our findings confirm that African clawed frogs (Xenopus laevis) and fish consume copepods, but that fish ingest, on average, significantly higher numbers (68% [34/50]) than adult African clawed frogs (36% [18/50]) during a 24-h time period. Our results suggest that amphibians and fish may play a role in the transmission of Dracunculus to definitive hosts. Still, additional research is required to determine whether, in the wild, fish or frogs are serving as paratenic or transport hosts. If so, they may facilitate Dracunculus transmission. However, if these animals simply act as dead-end hosts or as means of copepod population control, they may decrease Dracunculus transmission.

12.
Folia Parasitol (Praha) ; 682021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34152290

RESUMO

Based on light and electron microscopical studies, a new nematode parasite, Echinocephalus inserratus sp. n. (Spirurida: Gnathostomatidae), is described from the spiral valve of the broad cowtail stingray Pastinachus ater (Macleay) (Dasyatidae, Myliobatiformes) from off New Caledonia. The new species is morphologically and biometrically most similar to Echinocephalus overstreeti Deardorff et Ko, 1983, differing from it mainly in the absence of serrations on the posterior parts of pseudolabia and on interlabia, and in having a longer gubernaculum (150-299 µm long). Morphologically unidentifiable, mostly encapsulated larvae of Echinocephalus spp. were recorded from the following six species of teleost fishes collected in New Caledonian waters, serving as paratenic hosts: Perciformes: Acanthopagrus berda (Forsskål) (Sparidae) and Nemipterus furcosus (Valenciennes) (Nemipteridae); Tetraodontiformes: Abalistes stellatus (Anonymous), Pseudobalistes fuscus (Bloch et Schneider) (both Balistidae), Lagocephalus sceleratus (Gmelin) (Tetraodontidae) and Aluterus monoceros (Linnaeus) (Monacanthidae). Co-parasitising larvae of Ascarophis sp. and Hysterothylacium sp. were also collected from P. fuscus. All these findings represent new host and geographical records. A key to valid species of Echinocephalus Molin, 1858 is provided.


Assuntos
Doenças dos Peixes/epidemiologia , Interações Hospedeiro-Parasita , Rajidae , Infecções por Spirurida/veterinária , Thelazioidea/classificação , Animais , Feminino , Doenças dos Peixes/parasitologia , Larva/anatomia & histologia , Larva/classificação , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura/veterinária , Nova Caledônia/epidemiologia , Prevalência , Infecções por Spirurida/epidemiologia , Infecções por Spirurida/parasitologia , Thelazioidea/anatomia & histologia , Thelazioidea/crescimento & desenvolvimento , Thelazioidea/ultraestrutura
13.
Evolution ; 75(8): 1936-1952, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34184269

RESUMO

Parasitic worms (i.e., helminths) commonly infect multiple hosts in succession. With every transmission step, they risk not infecting the next host and thus dying before reproducing. Given this risk, what are the benefits of complex life cycles? Using a dataset for 973 species of trophically transmitted acanthocephalans, cestodes, and nematodes, we tested whether hosts at the start of a life cycle increase transmission and whether hosts at the end of a life cycle enable growth to larger, more fecund sizes. Helminths with longer life cycles, that is, more successive hosts, infected conspicuously smaller first hosts, slightly larger final hosts, and exploited trophic links with lower predator-prey mass ratios. Smaller first hosts likely facilitate transmission because of their higher abundance and because parasite propagules were the size of their normal food. Bigger definitive hosts likely increase fecundity because parasites grew larger in big hosts, particularly endotherms. Helminths with long life cycles attained larger adult sizes through later maturation, not faster growth. Our results indicate that complex helminth life cycles are ubiquitous because growth and reproduction are highest in large, endothermic hosts that are typically only accessible via small intermediate hosts, that is, the best hosts for growth and transmission are not the same.


Assuntos
Helmintos , Nematoides , Parasitos , Animais , Interações Hospedeiro-Parasita , Estágios do Ciclo de Vida , Reprodução
14.
Genomics ; 113(5): 2891-2905, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186188

RESUMO

Parasitism is a highly successful life strategy and a driving force in genetic diversity that has evolved many times over. Accidental infections of non-targeted hosts represent an opportunity for lateral host switches and parasite niche expansion. However, if directed toward organisms that are phylogenetically distant from parasite's natural host, such as humans, it may present a dead-end environment where the parasite fails to mature or is even killed by host immunity. One example are nematodes of Anisakidae family, genus Anisakis, that through evolution have lost the ability to propagate in terrestrial hosts, but can survive for a limited time in humans causing anisakiasis. To scrutinize versatility of Anisakis to infect an evolutionary-distant host, we performed transcriptomic profiling of larvae successfully migrating through the rat, a representative model of accidental human infection and compared it to that of larvae infecting an evolutionary-familiar, paratenic host (fish). In a homeothermic accidental host Anisakis upregulated ribosome-related genes, cell division, cuticle constituents, oxidative phosphorylation, in an unsuccessful attempt to molt to the next stage. In contrast, in the paratenic poikilothermic host where metabolic pathways were moderately upregulated or silenced, larvae prepared for dormancy by triggering autophagy and longevity pathways. Identified differences and the modelling of handful of shared transcripts, provide the first insights into evolution of larval nematode virulence, warranting their further investigation as potential drug therapy targets.


Assuntos
Anisaquíase , Anisakis , Animais , Anisaquíase/genética , Anisaquíase/parasitologia , Anisakis/genética , Peixes , Larva/genética , Ratos , Fatores de Virulência/genética
15.
Am Nat ; 197(2): E40-E54, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523790

RESUMO

AbstractParasitic worms with complex life cycles have several developmental stages, with each stage creating opportunities to infect additional host species. Using a data set for 973 species of trophically transmitted acanthocephalans, cestodes, and nematodes, we confirmed that worms with longer life cycles (i.e., more successive hosts) infect a greater diversity of host species and taxa (after controlling for study effort). Generalism at the stage level was highest for middle life stages, the second and third intermediate hosts of long life cycles. By simulating life cycles in real food webs, we found that middle stages had more potential host species to infect, suggesting that opportunity constrains generalism. However, parasites usually infected fewer host species than expected from simulated cycles, suggesting that generalism has costs. There was no trade-off in generalism from one stage to the next, but worms spent less time growing and developing in stages where they infected more taxonomically diverse hosts. Our results demonstrate that life-cycle complexity favors high generalism and that host use across life stages is determined by both ecological opportunity and life-history trade-offs.


Assuntos
Acantocéfalos/fisiologia , Cestoides/fisiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Nematoides/fisiologia , Animais , Cadeia Alimentar , Estágios do Ciclo de Vida
16.
Ecohealth ; 17(1): 13-27, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31989366

RESUMO

Invasive non-native species can become reservoirs of zoonotic pathogens and cause their spread during colonization, increasing the risk of zoonoses transmission to both wild hosts and humans. American mink (Neovison vison) are considered an important invasive mammal species responsible for carrying endoparasites. The aim of our study was to evaluate the role of feral American mink as a possible transmission vector of Echinococcus spp. and Toxocara spp. in wildlife. We analysed the frequency of American mink exposure to both parasites, the spatial distribution in Poland, and the variability over time on the basis of specific antibody presence using ELISA and Western blot. Alimentary tract analyses revealed that American mink do not serve as definitive hosts for these parasites. Altogether, 1100 American mink were examined. The average seropositivity for American mink was 14.2% for echinococcosis and 21.7% for toxocarosis; dual-seropositivity was detected in only 6.0%. Seroprevalence of both parasites differed between study sites and significantly increased over time in Toxocara spp. Thus, our study revealed that free-living American mink are exposed to parasites and likely to be involved in the maintenance of both Echinococcus spp. and Toxocara spp. in the wild as paratenic hosts.


Assuntos
Equinococose/epidemiologia , Vison/parasitologia , Toxocaríase/epidemiologia , Animais , Equinococose/veterinária , Echinococcus , Espécies Introduzidas , Polônia/epidemiologia , Toxocara
17.
Parasitol Res ; 119(2): 759-762, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31879805

RESUMO

Trematode Alaria spp. have a complex life cycle that includes canids, mustelids, and felids as definitive hosts. However, several mammal species, besides acting as definitive hosts, may also act as paratenic hosts. Alaria spp. life cycles are well studied. Still, there is a lack of knowledge on one host significance as both-the paratenic and definitive host, especially in the case of Eurasian lynx (Lynx lynx). Previous studies have described Eurasian lynx as a definitive host for A. alata although the prevalence has always been low. The aim of the present study was to analyze the occurrence of A. alata in Eurasian lynx in Latvia. The viscera (n = 231) and muscle samples (n = 234) from Eurasian lynx were collected during the hunting seasons from 2004/2005 to 2017/2018. The prevalence of the adult A. alata in Eurasian lynx was 1.7%. However, mesocercariae infection in Eurasian lynx was detected for the first time. These findings suggest that the Eurasian lynx may serve both as paratenic and definitive host for A. alata.


Assuntos
Lynx/parasitologia , Trematódeos/isolamento & purificação , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Animais , Canidae/parasitologia , Letônia/epidemiologia , Músculos/parasitologia , Mustelidae/parasitologia , Prevalência , Trematódeos/classificação , Trematódeos/genética
18.
Parasitology ; 146(14): 1714-1718, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31452476

RESUMO

The intestinal parasitic nematode, Baylisascaris transfuga, was recorded in wild rodents for the first time. Representatives of four murid species (15 Myodes rufocanus, 10 M. rutilus, 3 M. glareolus and 27 Microtus oeconomus) were collected in the White Sea coastal habitats in the south of the Kola Peninsula, Russia in July 2015 and examined for parasites. Encapsulated nematode larvae were detected in the mesentery and the large intestine wall of one grey-sided vole (M. rufocanus) and one tundra vole (M. oeconomus). Based on morphology, the larvae were identified as belonging to the genus Baylisascaris Sprent 1968. The partial 18S rDNA sequence of the larvae from the voles was obtained and fully corresponded to the sequence of Baylisascaris transfuga in the NCBI GenBank. The ITS rDNA and CoxI mtDNA sequences these larvae were also similar to the respective B. transfuga sequences in GenBank. The presence of B. transfuga in wild rodents suggests that rodents can participate in the B. transfuga life cycle.


Assuntos
Arvicolinae/parasitologia , Infecções por Ascaridida/veterinária , Ascaridoidea/isolamento & purificação , Roedores/parasitologia , Animais , Ascaridoidea/genética , Ciclo-Oxigenase 1/genética , DNA Ribossômico/genética , Feminino , Larva/genética , Masculino , Federação Russa
19.
J Vet Res ; 63(2): 197-203, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31276059

RESUMO

INTRODUCTION: Farm mink (Neovison vison) can be naturally exposed to T. canis and T. leonina pathogens on the farm. If mink were hosts, it would imply some veterinary public health as well as animal welfare issues. For this reason, the aim of the study was to determine whether mink might be definitive or paratenic hosts of these parasites. MATERIAL AND METHODS: Four groups of mink were infected with both parasite species using larvated eggs or feed containing mouse tissue previously infected with the parasites. Following inoculation, the infections were monitored in vivo by faecal examination for 14 weeks p.i., and then western blotting and ELISA were performed. RESULTS: Coprology did not reveal any canine roundworm eggs, neither were nematodes found in mink intestines during post mortem examination. The specific IgG antibodies recognising excretory/secretory (ES) antigens of both parasite species were identified in mink sera. Single T. leonina tissue larvae were found in digested organs. CONCLUSIONS: Our results confirm that farm mink may contribute both T. canis and T. leonina infections. It was proved that farm mink were not their definitive hosts, and therefore mink faeces need not be considered a source of canine roundworm eggs in any soil it fertilises. Nonetheless, as farm mink may be a paratenic host for both parasite species, this may have some impact on the health and welfare of infected animals.

20.
Parasitol Res ; 118(2): 433-440, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30607605

RESUMO

Acanthocephalans display a two-host life cycle that involves arthropods as intermediate hosts and vertebrates as definitive hosts. Some species also use paratenic hosts to bridge the trophic gap between both obligatory hosts. However, the relative role of these paratenic hosts in the transmission to definitive hosts has seldom been assessed quantitatively. We report on infection patterns of cystacanths of Corynosoma australe Johnston, 1937 in 20 common teleost species and the Argentine shortfin squid Illex argentinus (Castellanos) from the Patagonian shelf of Argentina. We also explore the role of different fish species in the transmission of C. australe to the most important definitive host in the area, i.e. the South American sea lion Otaria flavescens Shaw. Cystacanths of C. australe were found in all host species except Heliconus lahillei Norman, Merluccius hubbsi Marini and I. argentinus. In eight fish species, the prevalence of C. australe was > 50% and mean intensity > 4, i.e. Acanthistius patachonicus (Jenyns), Nemadactylus bergi (Norman), Paralichthys isosceles Jordan, Percophis brasiliensis Quoy & Gaimard, Prionotus nudigula Ginsburg, Scomber colias Gmelin, Raneya brasiliensis (Kaup) and Xystreurys rasile (Jordan). Two surveys on the trophic ecology of South American sea lions in the study area consistently found a generalist diet dominated by M. hubbsi, and data on the frequency of occurrence and number of other fish and cephalopod species in stomach contents strongly suggest that only R. brasiliensis may play a prominent role in the transmission of C. australe. This result raises interesting questions on the costs of paratenicity.


Assuntos
Acantocéfalos/fisiologia , Doenças dos Peixes/transmissão , Helmintíase Animal/transmissão , Leões-Marinhos/parasitologia , Animais , Argentina , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Cadeia Alimentar , Helmintíase Animal/epidemiologia , Helmintíase Animal/parasitologia , Especificidade de Hospedeiro , Jordânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA