Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Innov Entrep Health ; 5: 41-51, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246037

RESUMO

Smart implants are implantable devices that provide not only therapeutic benefits but also have diagnostic capabilities. The integration of smart implants into daily clinical practice has the potential for massive cost savings to the health care system. Applications for smart orthopedic implants have been identified for knee arthroplasty, hip arthroplasty, spine fusion, fracture fixation and others. To date, smart orthopedic implants have been used to measure physical parameters from inside the body, including pressure, force, strain, displacement, proximity and temperature. The measurement of physical stimuli is achieved through integration of application-specific technology with the implant. Data from smart implants have led to refinements in implant design, surgical technique and strategies for postoperative care and rehabilitation. In spite of decades of research, with very few exceptions, smart implants have not yet become a part of daily clinical practice. This is largely because integration of current sensor technology necessitates significant modification to the implants. While the technology underlying smart implants has matured significantly over the last several decades, there are still significant technical challenges that need to be overcome before smart implants become part of mainstream health care. Sensors for next-generation smart implants will be small, simple, robust and inexpensive and will necessitate little to no modification to existing implant designs. With rapidly advancing technology, the widespread implementation of smart implants is near. New sensor technology that minimizes modifications to existing implants is the key to enabling smart implants into daily clinical practice.

2.
Med Eng Phys ; 59: 81-87, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30064939

RESUMO

Smart implants have the potential to enable personalized care regimens for patients. However, the integration of smart implants into daily clinical practice is limited by the size and cost of available sensing technology. Passive resonant sensors are an attractive alternative to traditional sensing technologies because they obviate the need for on-sensor signal conditioning or telemetry and are substantially simpler, smaller, less expensive, and more robust than other sensing methods. We have developed a novel simple, passive sensing platform that is adaptable to a variety of applications. Sensors consist of only two disconnected parallel Archimedean spiral coils and an intervening solid dielectric layer. When exposed to force or pressure, the resonant frequency of the circuit shifts which can be measured wirelessly. We fabricated prototype pressure sensors and force sensors and compared their performance to a lumped parameter model which predicts sensor behavior. The sensors exhibited a linear response (R2 > 0.91) to dynamic changes in pressure or force with excellent sensitivity. Experimental data were within 13.3% and 6.2% of the values predicted by the model for force and pressure respectively. Results demonstrate that the sensors can be adapted to measure various measurands through a span of sensitivities and ranges by appropriate selection of the intervening layer.


Assuntos
Fenômenos Mecânicos , Pressão , Próteses e Implantes , Tecnologia sem Fio
3.
Magn Reson Med ; 80(1): 361-370, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29148092

RESUMO

PURPOSE: The purpose of this study is to develop a wireless, flexible, ultra-thin, and passive radiofrequency-based MRI resonant fiducial marker, and to validate its feasibility in a phantom model and several body regions. METHODS: Standard microfabrication processing was used to fabricate the resonant marker. The proposed marker consists of two metal traces in the shape of a square with an edge length of 8 mm, with upper and lower traces connected to each other by a metalized via. A 3T MRI fiducial marking procedure was tested in phantom and ex vivo, and then the marker's performance was evaluated in an MRI experiment using humans. The radiofrequency safety was also tested using temperature sensors in the proximity of the resonator. RESULTS: A flexible resonator with a thickness of 115 µm and a dimension of 8 × 8 mm was obtained. The experimental results in the phantom show that at low background flip angles (6-18°), the resonant marker enables precise and rapid visibility, with high marker-to-background contrast and signal-to-noise ratio improvement of greater than 10 in the vicinity of the marker. Temperature analysis showed a specific absorption ratio gain of 1.3. Clinical studies further showed a successful biopsy procedure using the fiducial marking functionality of our device. CONCLUSIONS: The ultra-thin and flexible structure of this wireless flexible radiofrequency resonant marker offers effective and safe MR visualization with high feasibility for anatomic marking and guiding at various regions of the body. Magn Reson Med 80:361-370, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Marcadores Fiduciais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Animais , Artefatos , Materiais Biocompatíveis/química , Biópsia por Agulha , Cateterismo , Desenho de Equipamento , Estudos de Viabilidade , Testa/diagnóstico por imagem , Humanos , Joelho/diagnóstico por imagem , Teste de Materiais , Metais/química , Imagens de Fantasmas , Coelhos , Ondas de Rádio , Reprodutibilidade dos Testes , Razão Sinal-Ruído
4.
Artigo em Inglês | MEDLINE | ID: mdl-27430033

RESUMO

We have developed, modeled, fabricated, and tested a passive wireless sensor system that exhibits a linear frequency-displacement relationship. The displacement sensor is comprised of two anti-aligned Archimedean coils separated by an insulating dielectric layer. There are no electrical connections between the two coils and there are no onboard electronics. The two coils are inductively and capacitively coupled due to their close proximity. The sensor system is interrogated wirelessly by monitoring the return loss parameter from a vector network analyzer. The resonant frequency of the sensor is dependent on the displacement between the two coils. Due to changes in the inductive and capacitive coupling between the coils at different distances, the resonant frequency is modulated by coil separation. In a specified range, the frequency shift can be linearized with respect to coil separation. Batch fabrication techniques were used to fabricate copper coils for experimental testing with air as the dielectric. Through testing, we validated the performance of sensors as predicted within acceptable errors. Because of its simplicity, this displacement sensor has potential applications for in vivo sensing.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24883335

RESUMO

Implementing implantable sensors which are robust enough to maintain long term functionality inside the body remains a significant challenge. The ideal implantable sensing system is one which is simple and robust; free from batteries, telemetry, and complex electronics. We have developed an elementary implantable sensor for orthopaedic smart implants. The sensor requires no telemetry and no batteries to communicate wirelessly. It has no on-board signal conditioning electronics. The sensor itself has no electrical connections and thus does not require a hermetic package. The sensor is an elementary L-C resonator which can function as a simple force transducer by using a solid dielectric material of known stiffness between two parallel Archimedean coils. The operating characteristics of the sensors are predicted using a simplified, lumped circuit model. We have demonstrated sensor functionality both in air and in saline. Our preliminary data indicate that the sensor can be reasonably well modeled as a lumped circuit to predict its response to loading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA