Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
1.
Front Cell Dev Biol ; 12: 1431337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119036

RESUMO

The Pax6 gene is essential for eye and brain development across various animal species. Here, we investigate the function of Pax6 in the development of the anterior central nervous system (CNS) of the invertebrate chordate amphioxus using CRISPR/Cas9-induced genome editing. Specifically, we examined Pax6 mutants featuring a 6 bp deletion encompassing two invariant amino acids in the conserved paired domain, hypothesized to impair Pax6 DNA-binding capacity and gene regulatory functions. Although this mutation did not result in gross morphological changes in amphioxus larvae, it demonstrated a reduced ability to activate Pax6-responsive reporter gene, suggesting a hypomorphic effect. Expression analysis in mutant larvae revealed changes in gene expression within the anterior CNS, supporting the conserved role of Pax6 gene in brain regionalization across chordates. Additionally, our findings lend support to the hypothesis of a zona limitans intrathalamica (ZLI)-like region in amphioxus, suggesting evolutionary continuity in brain patterning mechanisms. ZLI region, found in both hemichordates and vertebrates, functions as a key signaling center and serves as a restrictive boundary between major thalamic regions.

2.
Ocul Surf ; 34: 225-234, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127390

RESUMO

BACKGROUND-AIM: PAX6 is a key regulator of eye development and epithelial homeostasis in the cornea. When deficient, chronic corneal inflammation, neovascularization and limbal stem cell deficiency can occur. Here we investigated the potential of duloxetine, a generic serotonin reuptake inhibitor that can upregulate PAX6 in vitro, for its in vivo activity in the context of corneal inflammation. METHODS: Duloxetine tolerance was tested in a human limbal stem cell line and isogenic CRISPR-knockout PAX6+/- cells. C57BL/6-Wildtype mice were administered duloxetine eye drops at concentrations of 1 µM - 2 mM and tested for toxicity and corneal PAX6 expression. In LPS-induced corneal inflammation in mice, duloxetine's effect on PAX6 expression, corneal opacification and inflammatory responses were evaluated by in vivo corneal imaging, immunostaining, and whole-transcriptome microarray analysis. RESULTS: No toxicity was observed in vitro for duloxetine concentrations up to 10µΜ. In vivo, duloxetine drops were well-tolerated up to 50 µM. Duloxetine drops at 10µΜ significantly upregulated PAX6 protein levels in the cornea by 30 % within 2 days. In the LPS model, duloxetine resulted in a sustained 33 % PAX6 protein upregulation in the cornea at 7 days, and in reduced opacity within 2 days, accompanied by a significant dampening of IL-17A signaling, neutrophil degranulation, microglial activation, macrophage markers, and MMP expression, despite non-significant changes in total inflammatory cell infiltration. CONCLUSION: Short-term administration of a repurposed generic drug, duloxetine, upregulates PAX6 protein levels in the cornea of mice and exerts an anti-inflammatory activity by dampening innate immune responses.

3.
J Ophthalmic Vis Res ; 19(2): 183-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39055499

RESUMO

Purpose: To investigate the short-term effects of low-level lasers (LLLs; also known as low-power laser therapy) on the structure, genetic, and phenotype of cultured human retinal pigment epithelial (hRPE) cells from both adult and neonatal sources. Methods: Cultivated adult and neonatal hRPE cells were irradiated with two types of LLL (630 nm and 780 nm), 1 min daily for five consecutive days. Results: An increase in doubling time was observed in 630 nm-irradiated adult hRPE cells (P = 0.032). The gene expression profile revealed increased expression of retinoid isomerohydrolase RPE65 (RPE65) (P < 0.01 for 630 nm laser, P < 0.001 for 780 nm laser) and nestin (NES) (P < 0.01 for 630 nm laser) in neonatal hRPE cells, upregulation of RPE65 (P < 0.001 for 780 nm laser) and paired box 6 (PAX6) (P < 0.001 for 780 nm laser) genes in adult hRPE cells, and reduced expression of actin alpha 2 (ACTA2) in 780 nm-irradiated adult hRPE cells (P < 0.001). Except the significant increase of α -SMA in 780 nm-irradiated neonatal hRPE cells, no significant change was noted in the expressions of other investigated proteins. Conclusion: Short-term irradiation of neonatal and adult hRPE cells with LLLs may induce multipotency at the transcriptional level. Irradiation of neonatal hRPE cells with LLLs can be associated with increased risk of myofibroblastic transformation; however, adult hRPE cells irradiated with the 780 nm laser have minimal risk of myofibroblastic differentiation. It seems that the 780 nm laser may be a promising option for future photobiomodulation in retinal degenerations in adults.

4.
Curr Med Sci ; 44(4): 820-826, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38967890

RESUMO

OBJECTIVE: To examine the clinical phenotype and genetic deficiencies present in Chinese aniridia families with PAX6 haplotype deficiency. METHODS: A comprehensive questionnaire and ophthalmological assessments were administered to both affected patients and unaffected relatives. The clinical feature analysis included the evaluation of visual acuity, intraocular pressure, slit-lamp anterior segment examination, fundus photography, and spectral domain optical coherence tomography. To identify the mutation responsible for aniridia, targeted next-generation sequencing was used as a beneficial technique. RESULTS: A total of 4 mutations were identified, consisting of two novel frameshift mutations (c.314delA, p.K105Sfs*33 and c.838_845dup AACACACC, p.S283Tfs*85), along with two recurring nonsense mutations (c.307C>T, p.R103X and c.619A>T, p.K207*). Complete iris absence, macular foveal hypoplasia, and nystagmus were consistent in these PAX6 haplotype-deficient Chinese aniridia families, while corneal lesions, cataracts, and glaucoma exhibited heterogeneity both among the families and within the same family. CONCLUSION: In our study, two novel PAX6 mutations associated with aniridia were identified in Chinese families, which expanded the phenotypic and genotypic spectrum of PAX6 mutations. We also analyzed the clinical characteristics of PAX6 haplotype deficiency in Chinese aniridia families.


Assuntos
Aniridia , Haplótipos , Fator de Transcrição PAX6 , Linhagem , Fenótipo , Humanos , Fator de Transcrição PAX6/genética , Aniridia/genética , Masculino , Feminino , Haplótipos/genética , Adulto , Povo Asiático/genética , Pessoa de Meia-Idade , Mutação da Fase de Leitura/genética , China , Criança , Mutação , Adolescente , População do Leste Asiático
5.
Int J Ophthalmol ; 17(3): 466-472, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721508

RESUMO

AIM: To investigate the molecular diagnosis of a three-generation Chinese family affected with aniridia, and further to identify clinically a PAX6 missense mutation in members with atypical aniridia. METHODS: Eleven family members with and without atypical aniridia were recruited. All family members underwent comprehensive ophthalmic examinations. A combination of whole exome sequencing (WES) and direct Sanger sequencing were performed to uncover the causative mutation. RESULTS: Among the 11 family members, 8 were clinically diagnosed with congenital aniridia (atypical aniridia phenotype). A rare heterozygous mutation c.622C>T (p.Arg208Trp) in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects. CONCLUSION: A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia. This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia, which may also contribute to genetic counselling and family planning.

6.
Stem Cell Reports ; 19(6): 839-858, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821055

RESUMO

Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.


Assuntos
Apoptose , Células-Tronco Pluripotentes Induzidas , Microftalmia , Microftalmia/genética , Microftalmia/patologia , Microftalmia/metabolismo , Humanos , Apoptose/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proliferação de Células , Caspase 8/metabolismo , Caspase 8/genética , Matriz Extracelular/metabolismo , Olho/metabolismo , Olho/patologia , Fenótipo
7.
Neuron ; 112(13): 2157-2176.e12, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38697111

RESUMO

Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.


Assuntos
Encéfalo , Camundongos Knockout , Células-Tronco Neurais , Degradação do RNAm Mediada por Códon sem Sentido , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Epistasia Genética , Microcefalia/genética , Ciclo Celular/fisiologia , Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
8.
J Exp Clin Cancer Res ; 43(1): 144, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745318

RESUMO

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS: The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS: PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION: This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.


Assuntos
Cromatina , Fator de Transcrição PAX6 , Neoplasias da Próstata , Fator de Transcrição STAT5 , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Fenótipo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Transdução de Sinais , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo
9.
BMC Ophthalmol ; 24(1): 157, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594720

RESUMO

BACKGROUND: Aniridia is a rare eye disorder with a high incidence of glaucoma, and surgical intervention is often needed to control the intraocular pressure (IOP). Here, we reported a case of illuminated microcatheter-assisted circumferential trabeculotomy (MAT) performed on an aniridic glaucoma patient following a previous failed angle surgery. The surgical procedures for aniridic glaucoma were also reviewed. CASE PRESENTATION: A 21-year-old man, diagnosed with aniridic glaucoma, came to our hospital consulting for the poor control of left eye's IOP despite receiving goniotomy surgery 3 years ago. The IOP was 26 mmHg with maximum topical antiglaucoma eyedrops. The central cornea was opaque and the majority of iris was absent. The gonioscopy and ultrasound biomicroscopy (UBM) demonstrated that 360° anterior chamber angle was closed. The whole exome sequencing of peripheral blood confirmed a 13.39 Mb copy number loss at chromosome 11p15.1p13, containing PAX6 and WT1 gene. The 360° MAT surgery was performed on his left eye. At 1-year follow-up, the IOP was 19mmHg with 2 kinds of topical antiglaucoma medications, and the postoperative UBM demonstrated the successful incision of the anterior chamber angle. CONCLUSIONS: The case presented here exhibited a case of aniridic glaucoma treated by MAT surgery. The MAT surgery may be an effective option for IOP control in aniridic glaucoma patients following a previous failed angle surgery.


Assuntos
Aniridia , Glaucoma , Trabeculectomia , Humanos , Masculino , Adulto Jovem , Seguimentos , Glaucoma/diagnóstico , Glaucoma/cirurgia , Gonioscopia , Pressão Intraocular , Fator de Transcrição PAX6 , Estudos Retrospectivos , Trabeculectomia/métodos , Resultado do Tratamento
10.
Epigenetics Chromatin ; 17(1): 10, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643244

RESUMO

BACKGROUND: Nuclear organization of interphase chromosomes involves individual chromosome territories, "open" and "closed" chromatin compartments, topologically associated domains (TADs) and chromatin loops. The DNA- and RNA-binding transcription factor CTCF together with the cohesin complex serve as major organizers of chromatin architecture. Cellular differentiation is driven by temporally and spatially coordinated gene expression that requires chromatin changes of individual loci of various complexities. Lens differentiation represents an advantageous system to probe transcriptional mechanisms underlying tissue-specific gene expression including high transcriptional outputs of individual crystallin genes until the mature lens fiber cells degrade their nuclei. RESULTS: Chromatin organization between mouse embryonic stem (ES) cells, newborn (P0.5) lens epithelium and fiber cells were analyzed using Hi-C. Localization of CTCF in both lens chromatins was determined by ChIP-seq and compared with ES cells. Quantitative analyses show major differences between number and size of TADs and chromatin loop size between these three cell types. In depth analyses show similarities between lens samples exemplified by overlaps between compartments A and B. Lens epithelium-specific CTCF peaks are found in mostly methylated genomic regions while lens fiber-specific and shared peaks occur mostly within unmethylated DNA regions. Major differences in TADs and loops are illustrated at the ~ 500 kb Pax6 locus, encoding the critical lens regulatory transcription factor and within a larger ~ 15 Mb WAGR locus, containing Pax6 and other loci linked to human congenital diseases. Lens and ES cell Hi-C data (TADs and loops) together with ATAC-seq, CTCF, H3K27ac, H3K27me3 and ENCODE cis-regulatory sites are shown in detail for the Pax6, Sox1 and Hif1a loci, multiple crystallin genes and other important loci required for lens morphogenesis. The majority of crystallin loci are marked by unexpectedly high CTCF-binding across their transcribed regions. CONCLUSIONS: Our study has generated the first data on 3-dimensional (3D) nuclear organization in lens epithelium and lens fibers and directly compared these data with ES cells. These findings generate novel insights into lens-specific transcriptional gene control, open new research avenues to study transcriptional condensates in lens fiber cells, and enable studies of non-coding genetic variants linked to cataract and other lens and ocular abnormalities.


Assuntos
Cromatina , Cristalinas , Animais , Camundongos , Humanos , Células-Tronco Embrionárias Murinas/metabolismo , Cromossomos/metabolismo , Fatores de Transcrição/metabolismo , DNA/metabolismo , Epitélio/metabolismo , Cristalinas/genética , Cristalinas/metabolismo , Fator de Ligação a CCCTC/metabolismo
11.
Exp Eye Res ; 243: 109916, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679224

RESUMO

The conjunctiva is a non-keratinized, stratified columnar epithelium with characteristics different from the cornea and eyelid epidermis. From development to adulthood, a distinguishing feature of ocular versus epidermal epithelia is the expression of the master regulator PAX6. A conditionally immortalized conjunctival epithelial cell line (iHCjEC) devoid of stromal or immune cells established in our laboratory spontaneously manifested epidermal metaplasia and upregulated expression of the keratinization-related genes SPRR1A/B and the epidermal cytokeratins KRT1 and KRT10 at the expense of the conjunctival trait. In addition, iHCjEC indicated a significant decrease in PAX6 expression. Dry eye syndrome (DES) and severe ocular surface diseases, such as Sjögren's syndrome and Stevens-Johnson syndrome, cause the keratinization of the entire ocular surface epithelia. We used iHCjECs as a conjunctiva epidermal metaplasia model to test PAX6, serum, and glucocorticoid interventions. Reintroducing PAX6 to iHCjECs resulted in upregulating genes related to cell adhesion and tight junctions, including MIR200CHG and CLDN1. The administration of glucocorticoids or serum resulted in the downregulation of epidermal genes (DSG1, SPRR1A/B, and KRT1) and partially corrected epidermal metaplasia. Our results using an isolated conjunctival epidermal metaplasia model point toward the possibility of rationally "repurposing" clinical interventions, such as glucocorticoid, serum, or PAX6 administration, for treating epidermal metaplasia of the conjunctiva.


Assuntos
Túnica Conjuntiva , Metaplasia , Túnica Conjuntiva/patologia , Túnica Conjuntiva/metabolismo , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Glucocorticoides/uso terapêutico , Regulação da Expressão Gênica , Epiderme/patologia , Epiderme/metabolismo , Animais , Reação em Cadeia da Polimerase em Tempo Real , Linhagem Celular
12.
Differentiation ; 137: 100781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631141

RESUMO

Pax6 is a critical transcription factor involved in the development of the central nervous system. However, in humans, mutations in Pax6 predominantly result in iris deficiency rather than neurological phenotypes. This may be attributed to the distinct functions of Pax6 isoforms, Pax6a and Pax6b. In this study, we investigated the spatial and temporal expression patterns of Pax6 isoforms during different stages of mouse eye development. We observed a strong correlation between Pax6a expression and the neuroretina gene Sox2, while Pax6b showed a high correlation with iris-component genes, including the mesenchymal gene Foxc1. During early patterning from E10.5, Pax6b was expressed in the hinge of the optic cup and neighboring mesenchymal cells, whereas Pax6a was absent in these regions. At E14.5, both Pax6a and Pax6b were expressed in the future iris and ciliary body, coinciding with the integration of mesenchymal cells and Mitf-positive cells in the outer region. From E18.5, Pax6 isoforms exhibited distinct expression patterns as lineage genes became more restricted. To further validate these findings, we utilized ESC-derived eye organoids, which recapitulated the temporal and spatial expression patterns of lineage genes and Pax6 isoforms. Additionally, we found that the spatial expression patterns of Foxc1 and Mitf were impaired in Pax6b-mutant ESC-derived eye organoids. This in vitro eye organoids model suggested the involvement of Pax6b-positive local mesodermal cells in iris development. These results provide valuable insights into the regulatory roles of Pax6 isoforms during iris and neuroretina development and highlight the potential of ESC-derived eye organoids as a tool for studying normal and pathological eye development.


Assuntos
Olho , Regulação da Expressão Gênica no Desenvolvimento , Organoides , Fator de Transcrição PAX6 , Isoformas de Proteínas , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Animais , Camundongos , Organoides/metabolismo , Organoides/crescimento & desenvolvimento , Organoides/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Organogênese/genética
13.
Mol Med Rep ; 29(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516772

RESUMO

Remifentanil­induced hyperalgesia (RIH) is characterized by the emergence of stimulation­induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence­specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ­24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation­PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p­NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose­dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p­)NR2B. Nevertheless, the increased amount of p­NR2B by RIH was dose­dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.


Assuntos
Hiperalgesia , Isoflavonas , Animais , Ratos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/genética , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Piperidinas/farmacologia , Ratos Sprague-Dawley , Remifentanil/efeitos adversos , Fator de Transcrição PAX6/efeitos dos fármacos , Fator de Transcrição PAX6/metabolismo , Canais de Cátion TRPV/efeitos dos fármacos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
14.
Ophthalmic Genet ; 45(3): 219-225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38531548

RESUMO

PURPOSE: A large number of epidemiological studies have shown that myopia is a complex disease involving genetic, environmental, and behavioral factors. The purpose of this study was to explore the role of PAX6 gene methylation in myopia in Chinese adolescents. METHODS: Eighty junior high school students were divided into four groups based on their vision test results: mild myopia, moderate myopia, severe myopia, and non-myopia control. The methylation level of PAX6 gene promoter was detected by bisulfate pyrosequencing. RESULTS: The methylation level of PAX6 gene in myopia group (8.06% ± 1.43%) was slightly but significantly higher than that in non-myopia controls (7.26% ± 1.17%). In addition, PAX6 gene methylation levels presented a decreasing pattern along with the aggravation of myopia. Post-hoc analysis indicated significant inter-group differences for the mild myopia group and other groups (All p < .05). In the subgroup analysis by gender, the methylation level of PAX6 gene promoter in girls was higher than that in boys (p = .023). The ROC curves showed a high accuracy of PAX6 gene methylation to predict mild myopia (AUC (95% CI) = 0.828 (0.709-0.947), p < .001). CONCLUSIONS: The methylation of PAX6 gene might play a role in the onset and progression of myopia in Chinese adolescents. And this could potentially explore the potential molecular mechanisms of juvenile myopia in the future.


Assuntos
Metilação de DNA , Miopia , Fator de Transcrição PAX6 , Regiões Promotoras Genéticas , Adolescente , Criança , Feminino , Humanos , Masculino , China/epidemiologia , População do Leste Asiático/genética , Miopia/genética , Fator de Transcrição PAX6/genética , Projetos Piloto
15.
Biology (Basel) ; 13(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392287

RESUMO

Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification. In this current work, we applied immunohistochemistry, RNA sequencing, chromatin immunoprecipitation and sequencing, and the yeast two-hybrid assay to reveal that the BP-genic effect of H3 acetylation is dependent on Pax6 functionality in the developing mouse cortex. In the presence of Pax6, increased H3 acetylation caused BP pool expansion, leading to enhanced neurogenesis, which evoked expansion and quasi-convolution of the mouse neocortex. Interestingly, H3 acetylation activation exacerbates the BP depletion and corticogenesis reduction effect of Pax6 ablation in cortex-specific Pax6 mutants. Furthermore, we found that H3K9 acetyltransferase KAT2A/GCN5 interacts with Pax6 and potentiates Pax6-dependent transcriptional activity. This explains a genome-wide lack of H3K9ac, especially in the promoter regions of BP-genic genes, in the Pax6 mutant cortex. Together, these findings reveal a mechanistic coupling of H3 acetylation and Pax6 in orchestrating BP production and cortical expansion through the promotion of a BP gene expression program during cortical development.

16.
Pak J Med Sci ; 40(3Part-II): 509-513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356808

RESUMO

Objective: To investigate the correlation of maternal PDX1 methylation, NGN3 and Pax6 expression levels with neonatal blood sugars and birth weight in pregnant women with GDM and non GDM. Methods: This was a prospective cohort study. Total 80 pregnant women who were examined and delivered in the Department of Obstetrics of Affiliated Hospital of Hebei University from January 2019 to June 2022 were recruited and divided into two groups according to the results of oral glucose tolerance test (OGTT): the control group and the observation group, with 40 cases in each group. PDXl methylation rate was measured by the methylation-specific PCR method, whereas gene expression levels of PDX1, NGN3 and Pax6 were measured by RT-PCR meanwhile, neonatal blood glucose and hemoglobin A1c (HbA1c) levels were also measured. Results: In comparison with the control group, the observation group had higher levels of FBG, 2-hour postprandial blood glucose (2hPBG) and HbA1c (P<0.05). Neonatal birth weight and insulin levels in the observation group were significantly higher than those in the control group, while Apgar scores and blood glucose were lower than those in the control group(P<0.05). Moreover, the observation group had significantly lower gene expression levels of PDX1, NGN3 and Pax6, and a higher PDX1 methylation rate than the control group (P<0.05). Correlation analysis revealed a negative correlation between neonatal blood glucose levels and PDX1, NGN3 and Pax6 levels in the observation group, with statistical significance (P<0.05). Conclusion: Changes in maternal PDX1 methylation, NGN3 and Pax6 expression levels may lead to abnormal glucose metabolism in neonates, which has a close bearing on neonatal hypoglycemia and blood glucose levels caused by GDM.

17.
Curr Biol ; 34(6): 1258-1270.e5, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38401545

RESUMO

Vestigial organs provide a link between ancient and modern traits and therefore have great potential to resolve the phylogeny of contentious fossils that bear features not seen in extant species. Here we show that extant daddy-longlegs (Arachnida, Opiliones), a group once thought to possess only one pair of eyes, in fact additionally retain a pair of vestigial median eyes and a pair of vestigial lateral eyes. Neuroanatomical gene expression surveys of eye-patterning transcription factors, opsins, and other structural proteins in the daddy-longlegs Phalangium opilio show that the vestigial median and lateral eyes innervate regions of the brain positionally homologous to the median and lateral eye neuropils, respectively, of chelicerate groups like spiders and horseshoe crabs. Gene silencing of eyes absent shows that the vestigial eyes are under the control of the retinal determination gene network. Gene silencing of dachshund disrupts the lateral eyes, but not the median eyes, paralleling loss-of-function phenotypes in insect models. The existence of lateral eyes in extant daddy-longlegs bears upon the placement of the oldest harvestmen fossils, a putative stem group that possessed both a pair of median eyes and a pair of lateral eyes. Phylogenetic analysis of harvestman relationships with an updated understanding of lateral eye incidence resolved the four-eyed fossil group as a member of the extant daddy-longlegs suborder, which in turn resulted in older estimated ages of harvestman diversification. This work underscores that developmental vestiges in extant taxa can influence our understanding of character evolution, placement of fossils, and inference of divergence times.


Assuntos
Aracnídeos , Aranhas , Animais , Aracnídeos/genética , Fósseis , Filogenia , Fatores de Transcrição/metabolismo
18.
Cell Stem Cell ; 31(2): 227-243.e12, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215738

RESUMO

The conjunctival epithelium covering the eye contains two main cell types: mucus-producing goblet cells and water-secreting keratinocytes, which present mucins on their apical surface. Here, we describe long-term expanding organoids and air-liquid interface representing mouse and human conjunctiva. A single-cell RNA expression atlas of primary and cultured human conjunctiva reveals that keratinocytes express multiple antimicrobial peptides and identifies conjunctival tuft cells. IL-4/-13 exposure increases goblet and tuft cell differentiation and drastically modifies the conjunctiva secretome. Human NGFR+ basal cells are identified as bipotent conjunctiva stem cells. Conjunctival cultures can be infected by herpes simplex virus 1 (HSV1), human adenovirus 8 (hAdV8), and SARS-CoV-2. HSV1 infection was reversed by acyclovir addition, whereas hAdV8 infection, which lacks an approved drug therapy, was inhibited by cidofovir. We document transcriptional programs induced by HSV1 and hAdV8. Finally, conjunctival organoids can be transplanted. Together, human conjunctiva organoid cultures enable the study of conjunctival (patho)-physiology.


Assuntos
Túnica Conjuntiva , Células Caliciformes , Humanos , Camundongos , Animais , Túnica Conjuntiva/metabolismo , Células Caliciformes/metabolismo , Epitélio , Interleucina-13 , Homeostase , Organoides
19.
Indian J Clin Biochem ; 39(1): 47-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223000

RESUMO

Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-022-01085-1.

20.
J Comp Neurol ; 532(2): e25569, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104270

RESUMO

In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.


Assuntos
Núcleo Central da Amígdala , Animais , Hormônio Liberador da Corticotropina/metabolismo , Galinhas/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA