Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 388: 129789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741577

RESUMO

A novel magnetic hydrochar derived from cactus cladode (MW-MHC) was successfully synthesized through one-pot microwave-assisted process for efficiently removing lead(Pb)(Ⅱ) and phenol. From batch adsorption experiments, MW-MHC possessed the highest uptake amounts for Pb(Ⅱ) and phenol of 139.34 and 175.32 mg/g within 20 and 60 min, respectively. Moreover, the removal of Pb(Ⅱ) and phenol by MW-MHC remained essentially stable under the interference of different co-existing cations, presenting the excellent adaptability of MW-MHC. After three cycles of regeneration experiments, MW-MHC still had preferable adsorption performance and could be easily recycled, indicating its excellent reusability. Significantly, the uptake mechanisms of Pb(Ⅱ) on MW-MHC were regarded as chemical complexation, pore filling, precipitation, and electrostatic attraction. Meanwhile, the phenol uptake might be dominated by π-π interaction and hydrogen bonding. The above consequences revealed that MW-MHC with high removal performance was a promising adsorbent for remediating wastewater containing heavy metals and organics.


Assuntos
Poluentes Químicos da Água , Água , Chumbo , Fenol , Micro-Ondas , Poluentes Químicos da Água/análise , Adsorção , Fenóis , Cinética
2.
Artigo em Inglês | MEDLINE | ID: mdl-36673865

RESUMO

Microalgae contain a diversity of functional groups that can be used as environmental adsorbents. Spirulina platensis is a blue-green microalga that comprises protein-N, which is advantageous for use in nitrogen-containing biomass as adsorbents. This study aimed to enhance the adsorption properties of alginate hydrogels by employing Spirulina platensis. Spirulina platensis was immobilized on sodium alginate (S.P@Ca-SA) via crosslinking. The results of field-emission scanning electron microscopy, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses of the N-containing functional groups indicated that Spirulina platensis was successfully immobilized on the alginate matrix. We evaluated the effects of pH, concentration, and contact time on Pb(II) adsorption by S.P@Ca-SA. The results demonstrated that S.P@Ca-SA could effectively eliminate Pb(II) at pH 5, reaching equilibrium within 6 h, and the maximum Pb(II) sorption capacity of S.P@Ca-SA was 87.9 mg/g. Our results indicated that S.P@Ca-SA fits well with the pseudo-second-order and Freundlich models. Compared with Spirulina platensis and blank alginate beads, S.P@Ca-SA exhibited an enhanced Pb(II) adsorption efficiency. The correlation implies that the amino groups act as adsorption sites facilitating the elimination of Pb(II).


Assuntos
Chumbo , Poluentes Químicos da Água , Alginatos/química , Cinética , Concentração de Íons de Hidrogênio , Adsorção , Água
3.
Huan Jing Ke Xue ; 42(11): 5440-5449, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708983

RESUMO

Eucalyptus biochar(BC) was prepared and potassium permanganate was used to modify the biochar(KBC). Static adsorption experiments on Pb(Ⅱ) in aqueous solution were carried out to investigate the effects of pH, adsorbent dosing, adsorption time, temperature, and initial concentration on the adsorption of Pb(Ⅱ). The results showed that the optimum pH was 5 while the adsorption reached saturation after 6 h. When the temperature was 25℃, the initial concentration of Pb(Ⅱ) was 100 mg·L-1 with an adsorbent dosage of 0.06 g; the maximum adsorption of Pb(Ⅱ) by KBC was 83.059 mg·g-1, with a removal rate of 99.67%. The adsorption of Pb(Ⅱ) by KBC followed the pseudo-second-order kinetic model and the Langmuir isothermal adsorption model, which is a monolayer adsorption occurring on a homogeneous surface. The adsorbents were characterized using the BET method, scanning electron microscopy and energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), Fourier transformed infrared(FT-IR) and X-ray photoelectron spectroscopy(XPS). The adsorption mechanism of Pb(Ⅱ) by KBC oxygen-containing and manganese-containing groups was through complexation and precipitation, and the formation of -O-Pb-O- bidentate complexes on the surface of the biochar. Therefore, potassium permanganate-modified BC can be used as a good Pb(Ⅱ) adsorbent.


Assuntos
Eucalyptus , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Permanganato de Potássio , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
Huan Jing Ke Xue ; 42(11): 5450-5459, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708984

RESUMO

Layered double hydroxides, which can be synthesized from metal ions and their analogs, have abundant interlayer ions, surface functional groups, and adsorption characteristics that have been extensively studied. But the adsorption-desorption process may cause secondary pollution of the environment. In this study, the layered double hydroxides that adsorbed Congo red were converted into mixed metal oxide/carbon composites by a calcining carbonization method, and its adsorption performance for heavy metal ions Pb(Ⅱ) in aqueous solution was studied in detail. The results show that the prepared mixed metal oxide/carbon composites have a faster adsorption rate and higher adsorption capacity for Pb(Ⅱ). The adsorption capacity reached more than 150 mg·g-1 in 30 min, and increased with the content of Mg2+ introduced into the layered double metal hydroxide, reaching a maximum of 368 mg·g-1. The removal mechanism of Pb(Ⅱ) by mixed metal oxide/carbon composites was caused by the formation of insoluble Pb3(CO3) 2(OH) 2 on the surface. This research lays the foundation for the application of mixed metal oxide/carbon composites in the remediation of lead-containing soils.

5.
Ecotoxicol Environ Saf ; 203: 111002, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684519

RESUMO

In this paper, environmental friendly magnetic composite adsorbent (MSAL), exhibited excellent adsorption capacity for lead ions in the solution, was successfully prepared using two non-biologically toxic materials including L-cysteine and sodium alginate. Batch experiments were carried out to discuss the influences of different parameters like pH, adsorbent dosing, initial concentration and contact time on adsorption performance. Results showed sorption process followed by pseudo-second-order kinetic model and Langmuir isotherm model, which suggested the adsorption was limited by the chemical process dominated by the molecular layer. Based on Langmuir isotherm model, the maximum Pb(Ⅱ) adsorption capacity was about 330 mg/g, which was better than a large amount of other lead adsorbents. Various analytical methods, such as SEM-EDS, FTIR, VSM, TGA, XPS and Zeta potential, were applied to characterize the performance of this adsorbent as well as exploring the adsorption mechanism. Characterization results found this adsorbent exhibited a large contact area, good thermal stability, sufficient adsorption sites and excellent magnetic responsiveness. It also has been found that the adsorption mechanism mainly included ion exchange and chelation between amino, carboxyl and lead ions. After 5 cycles, the adsorption capacity decreased from 98.04% to 87.40% and still maintained at high level. The average iron ions concentration in the adsorbed solution sample or in the regeneration solution were 0.34 mg/L and 0.15 mg/L. Overall, all above results imply that MSAL is a promising reusable adsorbent for removing Pb(Ⅱ) in solution.


Assuntos
Chumbo/análise , Nanopartículas de Magnetita/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Alginatos/química , Cisteína/química , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Propriedades de Superfície
6.
Huan Jing Ke Xue ; 41(3): 1498-1504, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608654

RESUMO

The specific characteristics and mechanism of passivation of Pb in soil were studied using HAP/C composite (PBGC-HAP/C) as passivation, and using proportion of PBGC-HAP/C, particle size and type of passivator, soil moisture content, soil pH value of Pb, and particle size of the material as influencing factors. The results showed that with an increase in dosage of the passivator and passivation time, the passivation effect increases gradually. Reducing the particle size of the passivator is beneficial to improving the passivation effect. pH has a greater impact on passivation, with the passivation effect obviously rising with increased pH, and the passivation rate in an alkaline environment can reach above 99%. An increase in water content is beneficial to the improvement of the passivation effect, but the contribution is not significant. Through comparative analysis of the XPS, XRD, and FT-IR of materials before and after passivation, the results indicated that the passivation of PBGC-HAP/C to Pb is mainly through direct and indirect effects. Direct effects include physical adsorption, chemical complexation, electrostatic interaction, ion exchange, and precipitation; the indirect effect is mainly enhanced by increasing the pH value of the organic matter.

7.
Huan Jing Ke Xue ; 41(4): 1770-1778, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608684

RESUMO

In this study, watermelon rind was used as a raw material to modify watermelon rind biochar (MBC) with ammonium sulphate[(NH4)2S] for adsorption of Pb(Ⅱ) ions. The effects of solution pH, adsorption time, adsorbent addition amount, initial mass concentration of Pb(Ⅱ) ions, and ionic strength on the adsorption of Pb(Ⅱ) ions were investigated. The results show that the saturated adsorption time was 5 h, the optimum pH of the adsorption reaction was 6, and when the initial mass concentration of Pb(Ⅱ) ions were 1000 mg·L-1, and the amount of adsorbent was 2.0 g·L-1. The maximum adsorption amount of MBC to Pb(Ⅱ) ions can reach 97.63 mg·g-1, which is significantly higher than unmodified watermelon husk biochar (BC). The adsorption of Pb(Ⅱ) ions by modified watermelon biochar was in accordance with the Langmuir isotherm adsorption model and the pseudo second-order kinetic model, which proves that adsorption is dominated by monolayer chemical adsorption. The desorption of MBC after adsorption of Pb(Ⅱ) ions was carried out using a sodium hydroxide solution to study the reusability of MBC, and the adsorption amount was still 64.74 mg·g-1 in the sixth cycle. Characterization and analysis of adsorbents by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nitrogen adsorption, scanning electron microscopy-energy spectroscopy, zeta potential analysis, and X-ray diffraction (XRD) were carried out, which showed that the adsorption mechanism is mainly that MBC oxygen- and MBC sulfur-containing groups adsorb Pb(Ⅱ) through complexation and precipitation. Therefore, ammonium sulfide modified watermelon rind biochar can be used as a highly efficient lead adsorbent.

8.
Chemosphere ; 253: 126650, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32268252

RESUMO

This study firstly reported a novel nano humboldtine/almandine composite (NHLA composite) prepared directly from almandine through one-pot method based on the interaction of almandine and oxalic acid. The formation of humboldtine/almandine binary phase from natural almandine was determined by X-ray diffraction. Analysis of scanning & transmission electron microscope showed that large amount of nano humboldtine with uniform size (average size of 15.59 nm) were loaded on the almandine sheets. Compared with raw minerals, Pb(Ⅱ) removal capacity of synthesized composite was significantly increased, demonstrating that the main active ingredient for Pb(Ⅱ) removal was humboldtine phase rather than almandine itself. Pb(Ⅱ) adsorption capacity was increased with the increasing of initial pH value or temperature. Langmuir isotherm and Pseudo-second order kinetic equation were well fitted with experimental results and the maximum Pb(Ⅱ) adsorption capacity from Langmuir isotherm was 574.71 mg/g at temperature of 25 °C. In addition, heavy metal removal experiments in coexisting systems of multiple heavy metal ions manifested that the composite had a high selectivity for Pb(Ⅱ) adsorption. Ion exchange, surface complexation and electrostatic interaction have involved in the Pb(Ⅱ) adsorption. The synthesized composite was considered as a low cost, high efficiency, super selectivity and easy to mass production material for Pb(Ⅱ) adsorption from solution.


Assuntos
Chumbo/química , Modelos Químicos , Adsorção , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais Pesados , Minerais/química , Difração de Raios X
9.
Environ Toxicol ; 29(11): 1346-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23613127

RESUMO

Greater exposure to Pb(Ⅱ) increases the likelihood of harmful effects in the environment. In this study, the aquatic unicellular alga Chlorella protothecoides (C. protothecoides) and Chlorella vulgaris (C. vulgaris) were chosen to assess the acute and chronic toxicity of Pb(Ⅱ) exposure. Results of the observations show dose-response relationships could be clearly observed between Pb(Ⅱ) concentration and percentage inhibition (PI). Exposure to Pb(Ⅱ) increased malondialdehyde (MDA) content by up to 4.22 times compared with the control, suggesting that there was some oxidative damage. ANOVA analysis shows that Pb(Ⅱ) decreased chlorophyll (chl) content, indicating marked concentration-dependent relationships, and the lowest levels of chl a, chl b, and total-chl were 14.53, 18.80, and 17.95% of the controls, respectively. A real-time PCR assay suggests the changes in transcript abundances of three photosynthetic-related genes. After 120 h exposure Pb(Ⅱ) reduced the transcript abundance of rbcL, psaB, and psbC, and the relative abundances of the three genes of C. protothecoides and C. vulgaris in response to Pb(Ⅱ) were 54.66-98.59, 51.68-95.59, 37.89-95.48, 36.04-94.94, 41.19-91.20, and 58.75-96.80% of those of the controls, respectively. As for 28 d treatments, the three genes displayed similar inhibitory trend. This research provides a basic understanding of Pb(Ⅱ) toxicity to aquatic organisms.


Assuntos
Chlorella/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Chumbo/toxicidade , Malondialdeído/metabolismo , Fotossíntese/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Chlorella/fisiologia , Chlorella vulgaris/efeitos dos fármacos , Chlorella vulgaris/fisiologia , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila A , Oxirredução , Fotossíntese/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA