Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Ecotoxicol Environ Saf ; 283: 116796, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094451

RESUMO

BACKGROUND: Previous studies reported that lead (Pb) exposure induced adverse health effects at high exposure concentrations, however, there have been limited data on sensitivity comparisons among different health outcomes at low blood Pb levels. OBJECTIVES: To compare sensitivity between blood parameters and a genotoxic biomarker among workers exposed to low blood Pb levels (< 20 µg/dl), and to estimate a benchmark dose (BMD). METHODS: Pb-exposed workers were recruited from a lead-acid storage battery plant. Their blood lead levels (BLLs) were measured. Blood parameters and micronuclei (MN) frequencies were determined. Multivariate linear or Poisson regression was used to analyze relationships between blood parameters or MN frequencies with BLLs. Two BMD software were used to calculate BMD and its 95 % lower confidence limit (BMDL) for BLLs. RESULTS: The median BLL for 611 workers was 10.44 µg/dl with the 25th and 75th percentile being 7.37 and 14.62 µg/dl among all participants. There were significantly negative correlations between blood parameters and BLLs. However, MN frequencies correlated positively with BLLs (all P<0.05). Results from the two BMD software revealed that the dichotomous model was superior to the continuous model, and the BMDL for BLL derived from red blood cell (RBC) was 15.11 µg/dl, from hemoglobin (HGB) was 8.50 µg/dl, from mean corpuscular hemoglobin (MCH) was 7.87 µg/dl, from mean corpuscular hemoglobin concentration (MCHC) was 3.98 µg/dl, from mean corpuscular volume (MCV) was 11.44 µg/dl, and from hematocrit (HCT) was 6.65 µg/dl. The conservative BMDL obtained from the MN data was 7.52 µg/dl. CONCLUSION: Our study shows that low dose Pb exposure caused decrease of blood parameters and increase of MN frequencies. The genotoxic biomarker was more sensitive than most blood parameters. BMDLs for BLL derived from MN frequencies and the red blood cell indicators should be considered as new occupational exposure limits. Our results suggest that MN assay can be considered as a part of occupational health examination items.

2.
Biol Trace Elem Res ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935257

RESUMO

S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and the ratio of SAM and SAH in Pb-exposed workers need to be assessed. In this study, we investigated the effects of Pb exposure on SAM, SAH, and methylation index (MI) in Pb-exposed workers with contemplation of lifestyle factors. Blood lead levels (BLLs), SAM, SAH, MI, and lifestyle factors were assessed in 338 male Pb-exposed workers. BLLs are estimated by ICP-OES method. SAM and SAH levels in serum were determined by ELISA method. The MI was calculated using SAM and SAH individual values. The lifestyle factors were collected using standard questionnaire. Levels of SAM and MI were significantly decreased with increased age, experience > 5 years, habits of tobacco chewing, smoking, alcohol consumption, and BLLs 10-30, 30-50, and > 50 µg/dL. Levels of SAH were significantly increased with increased age, habits of tobacco chewing and smoking, and BLLs 10-30, 30-50, and > 50 µg/dL. The association between BLLs and methylation index markers (SAM and MI) was reported as negative and significant. The association between BLLs and SAH was noted positive and significant. The influence of BLLs and lifestyle factors on SAM was noted at 12%, SAH at 35%, and MI at 27%, respectively. The highest percentage of influence was noted in SAH, followed by MI and SAM. In the workers exposed to Pb, lifestyle factors resulted in decreased SAM and MI and increased SAH levels. Adaptation of healthy lifestyle factors, personal hygiene practices, and use of PPE were suggested to minimize the reduction of methylation index markers.

3.
Sci Total Environ ; 931: 172781, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38685433

RESUMO

Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.


Assuntos
Poluentes Ambientais , Chumbo , Chumbo/toxicidade , Humanos , Poluentes Ambientais/toxicidade , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos
4.
J Biol Inorg Chem ; 29(3): 375-383, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38289478

RESUMO

Previous studies reported that Pb exposure causes a negative association with delta-aminolevulinic acid dehydratase activity (δ-ALAD), but the impact of Pb exposure (dose and time), B vitamin deficiencies, and lifestyle factors needs to be explored. In this study, the impact of Pb exposure, B vitamin deficiencies, and lifestyle factors on δ-ALAD activity among workers exposed to Pb from the Pb-recycling process was evaluated. Blood lead levels (BLLs), B vitamins (B6, B9, and B12), hematological factors (Hb% and HCT), lifestyle factors, and δ-ALAD activity was assessed in 170 male Pb-exposed workers engaged in the Pb recycling process. BLLs are estimated using the ICP-OES method. B vitamins in serum samples from workers were determined using the ELISA method. The δ-ALAD activity in whole blood samples was determined using the spectrophotometer method. The lifestyle factors were collected using a standard questionnaire. The δ-ALAD activity was significantly decreased in workers with the habits of alcohol use, tobacco consumption, hematocrit < 41%, mild and moderate categories of anemia, vitamin B6 and B12 deficiency, and BLL categories of 10-30, 30-50, and > 50 µg/dL. Multiple regression analysis revealed that the independent variables of alcohol consumption (ß = - 0.170; P = 0.025), BLLs (ß = - 0.589; P = 0.001) and Hb% (ß = 0.183; P = 0.001) significantly influenced the δ-ALAD activity with 44.2% (R2 = 0.442). Among the workers exposed to Pb from the Pb recycling plant, δ-ALAD activity was considerably reduced by Pb exposure, B vitamin deficiency, hematological parameters, and lifestyle factors.


Assuntos
Chumbo , Exposição Ocupacional , Sintase do Porfobilinogênio , Humanos , Sintase do Porfobilinogênio/metabolismo , Sintase do Porfobilinogênio/sangue , Masculino , Chumbo/sangue , Adulto , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Deficiência de Vitaminas do Complexo B/sangue , Reciclagem , Pessoa de Meia-Idade , Complexo Vitamínico B/sangue
5.
Environ Health ; 23(1): 2, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166850

RESUMO

BACKGROUND: Environmental lead (Pb) exposure have been suggested as a causative factor for amyotrophic lateral sclerosis (ALS). However, the role of Pb content of human body in ALS outcomes has not been quantified clearly. The purpose of this study was to apply Bayesian networks to forecast the risk of Pb exposure on the disease occurrence. METHODS: We retrospectively collected medical records of ALS inpatients who underwent blood Pb testing, while matched controlled inpatients on age, gender, hospital ward and admission time according to the radio of 1:9. Tree Augmented Naïve Bayes (TAN), a semi-naïve Bayes classifier, was established to predict probability of ALS or controls with risk factors. RESULTS: A total of 140 inpatients were included in this study. The whole blood Pb levels of ALS patients (57.00 µg/L) were more than twice as high as the controls (27.71 µg/L). Using the blood Pb concentrations to calculate probability of ALS, TAN produced the total coincidence rate of 90.00%. The specificity, sensitivity of Pb for ALS prediction was 0.79, or 0.74, respectively. CONCLUSION: Therefore, these results provided quantitative evidence that Pb exposure may contribute to the development of ALS. Bayesian networks may be used to predict the ALS early onset with blood Pb levels.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/epidemiologia , Teorema de Bayes , Chumbo , Estudos Retrospectivos , Fatores de Risco
6.
Environ Sci Technol ; 57(33): 12222-12233, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37559393

RESUMO

Lead (Pb) is a widespread neurotoxic pollutant. Pb exposure is associated with mood disorders, with no well-established neural mechanisms elucidated. In the present study, we aimed to investigate whether excitatory neurons in the dentate gyrus subregion of the ventral hippocampus (vDG) played a key role in Pb-induced anxiety and depression-like behaviors. C57BL/6 mice were exposed to 100 ppm Pb starting on day 1 of pregnancy until experiments were performed using the offspring. Behavioral studies suggested that chronic Pb exposure triggered anxiety and depression-like behaviors. A combination of electrophysiological, optogenetic, and immunohistochemistry experiments was conducted. Results showed that Pb exposure resulted in excitatory neuronal hyperexcitability in vDG and that the behavioral deficits caused by Pb exposure could be rescued by inhibition of excitatory neuronal activity. Moreover, it was found that the action potential (AP) threshold of excitatory neurons was decreased by electrophysiological recordings. Our study demonstrates a significant role for excitatory neurons in vDG in Pb-induced anxiety and depression-like behaviors in mice, which is likely a result of decreased AP threshold. These outcomes can serve as an important basis for understanding mechanisms of anxiety and depression under environmental Pb exposure and help in the design of therapeutic strategies.


Assuntos
Depressão , Chumbo , Gravidez , Feminino , Camundongos , Animais , Chumbo/toxicidade , Depressão/induzido quimicamente , Camundongos Endogâmicos C57BL , Hipocampo , Ansiedade/induzido quimicamente , Giro Denteado
7.
Environ Res ; 235: 116647, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37442254

RESUMO

The biological pathways which link lead (Pb) and long-term outcomes are unclear, though rodent models and a few human studies suggest Pb may alter the body's stress response systems, which over time, can elicit dysregulated stress responses with cumulative impacts. This study examined associations between prenatal and early childhood Pb exposure and adolescent allostatic load, an index of an individual's body burden of stress in multiple biological systems, and further examined sex-based associations. Among 391 (51% male) participants in the ELEMENT birth cohort, we related trimester-specific maternal blood Pb, 1-month postpartum maternal tibia and patella Pb, and child blood Pb at 12-24 months to an allostatic load index in adolescence comprised of biomarkers of cardiovascular, metabolic, neuroendocrine, and immune function. The results were overall mixed, with prenatal exposure, particularly maternal bone Pb, being positively associated with allostatic load, and early childhood Pb showing mixed results for males and females. In adjusted Poisson regression models, 1 mcg/g increase in tibia Pb was associated with a 1% change in expected allostatic load (IRR = 1.01; 95%CI 0.99, 1.02). We found a significant Pb × sex interaction (IRR = 1.05; 95%CI 1.01, 1.10); where males saw an increasing percent change in allostatic load as 12 month Pb levels increased compared to females who saw a decreasing allostatic load. Further examination of allostatic load will facilitate the determination of potential mechanistic pathways between developmental toxicant exposures and later-in-life cardiometabolic outcomes.


Assuntos
Alostase , Chumbo , Adolescente , Pré-Escolar , Feminino , Humanos , Masculino , Gravidez , Alostase/fisiologia , Biomarcadores , Estudos de Coortes , Família , Vitaminas , Lactente
8.
J Biol Chem ; 299(8): 105023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423307

RESUMO

Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between developmental Pb exposure and Alzheimer's disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking developmental Pb exposure and increased AD risk, however, remains elusive. In this work, we used human iPSC-derived cortical neurons as a model system to study the effects of Pb exposure on AD-like pathogenesis in human cortical neurons. We exposed neural progenitor cells derived from human iPSC to 0, 15, and 50 ppb Pb for 48 h, removed Pb-containing medium, and further differentiated them into cortical neurons. Immunofluorescence, Western blotting, RNA-sequencing, ELISA, and FRET reporter cell lines were used to determine changes in AD-like pathogenesis in differentiated cortical neurons. Exposing neural progenitor cells to low-dose Pb, mimicking a developmental exposure, can result in altered neurite morphology. Differentiated neurons exhibit altered calcium homeostasis, synaptic plasticity, and epigenetic landscape along with elevated AD-like pathogenesis markers, including phosphorylated tau, tau aggregates, and Aß42/40. Collectively, our findings provide an evidence base for Ca dysregulation caused by developmental Pb exposure as a plausible molecular mechanism accounting for increased AD risk in populations with developmental Pb exposure.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Chumbo , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Homeostase , Células-Tronco Pluripotentes Induzidas/patologia , Chumbo/toxicidade , Neurônios/patologia
9.
Environ Anal Health Toxicol ; 38(1): e2023004-0, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37100399

RESUMO

Heavy metals such as lead (Pb) and cadmium (Cd) exist as particulate matter (PM) in the air and can cause biological damage to cells, animals, and humans. However, the mechanism underlying the toxic effects of heavy metals on nerve cells has not yet been completely identified. Glioma is the most common and fatal tumor in the central nervous system; the U87 human glioblastoma cell line is commonly used when researching brain cancer, including aggressive malignant gliomas. Therefore, in this study, cell viability, cytotoxicity, and interleukin-6 (IL-6) levels were analyzed to confirm the effect of Cd and Pb exposure on U87 cells. On confirming the absence of significant effects on cell viability at low concentrations of heavy metals, Cd and Pb exposure had no effect on lactic acid dehydrogenase (LDH) activity at the concentrations (1 µg/L, 30 µg/L, and 1 mg/L) used in this study, and there was a remarkable effect of Cd and Pb exposure on the inflammatory response of these cells. Our findings provide a basis for future research elucidating the effects of heavy metal exposure on cellular pathology. Systematic studies with higher heavy metal concentrations and precision are warranted to deepen our understanding of the relationship between heavy metal exposure and neuronal responses.

10.
J Appl Microbiol ; 134(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36958864

RESUMO

AIMS: Lead (Pb) is a toxic heavy metal that has been intensively studied, but its toxicity in sub-healthy people remains unclear. This study aims to investigate the adverse effects of Pb in the obese population and validate the feasibility of a potential probiotic strain for the treatment of Pb poisoning and diet-induced obesity. METHODS AND RESULTS: Male Kunming mice were fed a high-fat/high-sugar (HFHS) diet for 6 weeks, then received Pb exposure and Lactiplantibacillus plantarum P101 supplementation for 2 weeks. The histopathology of the liver and colon was observed, and biochemical indicators and gene expression levels were measured. CONCLUSIONS: Here, we reported that Pb exposure exacerbated the existing oxidative stress and gut barrier injury in obese mice, leading to more severe Pb accumulation, and hepatic inflammatory injury compared with normal diet-fed mice. It is worth noting that the P101 treatment significantly reduced Pb accumulation by promoting fecal Pb excretion and enhanced the antioxidant capacity of mice. After P101 treatment, obesity-related indicators were downregulated, and the hepatic injury and gut barrier disruption in mice were alleviated effectively.


Assuntos
Lactobacillus plantarum , Probióticos , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Camundongos Obesos , Chumbo/toxicidade , Chumbo/metabolismo , Fígado , Obesidade , Probióticos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
11.
Toxics ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36977021

RESUMO

Recent data indicate that lead (Pb) can induce adverse effects even at low exposure levels. Moreover, the corresponding mechanisms of low Pb toxicity have not been well identified. In the liver and the kidneys, Pb was found to induce various toxic mechanisms leading to organ physiological disruption. Therefore, the purpose of the study was to simulate low-dose Pb exposure in an animal model with the aim of assessing oxidative status and essential element levels as the main mechanism of Pb toxicity in the liver and kidneys. Furthermore, dose-response modelling was performed in order to determine the benchmark dose (BMD). Forty-two male Wistar rats were divided into seven groups: one control group, and six groups treated for 28 days with 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg b.w./day, respectively. Oxidative status parameters (superoxide dismutase activity (SOD), superoxide anion radical (O2-), malondialdehyde (MDA), total sulfhydryl groups (SHG), and advanced oxidation protein products (AOPP)) and Pb, copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels were measured. Lowering Cu levels (BMD: 2.7 ng/kg b.w./day), raising AOPP levels (BMD: 0.25 µg/kg b.w./day) in the liver, and inhibiting SOD (BMD: 1.3 ng/kg b.w./day) in the kidneys appear to be the main mechanisms of Pb toxicity. The lowest BMD was derived for a decrease in Cu levels in liver, indicating that this effect is the most sensitive.

12.
Sci Total Environ ; 871: 162067, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758690

RESUMO

Millions of lead (Pb) pipes are still used in the drinking water distribution systems in many regions in the world. Human exposure to Pb from contaminated drinking water continues to be of concern in the United States (U.S.), as illustrated by the widely publicized "Flint Water Crisis" in 2015. The Pb isotopic composition of Pb-pipes potentially can be useful to identify human exposure to Pb from lead service lines (LSLs). In addition, as the LSLs were likely manufactured from similar industrial Pb sources as other Pb objects and materials in the USA, the Pb-pipes isotope data can provide information about the overall isotopic composition of the U.S. industrial Pb. In this work we present high-precision Pb isotope data from Pb-pipes excavated from different U.S. municipalities. The Pb-pipes show an extremely wide range of Pb isotopic compositions, with 206Pb/204Pb ranging from 17.004 to 22.010, 207Pb/204Pb from 15.460 to 15.921, and 208Pb/204Pb from 36.687 to 41.120. The wide isotope range is observed even in a single town, suggesting that no regional Pb isotope patterns can be expected within the continental USA. However, the high-precision MC-ICP-MS Pb data form a clear linear trend that, depending on the context, can be used to identify human Pb exposure. Furthermore, as the linear trend is a result of utilization of Pb ores from different domestic and international sources and secondary recycling of metallic Pb, it is likely representative of the overall isotopic composition of the U.S. industrial Pb pool. Therefore, the identified trend is the most accurate isotope representation of the U.S. anthropogenic Pb at present and can be used as first-order evaluation to determine if a person with elevated blood Pb levels was exposed to U.S. industrial Pb sources.


Assuntos
Água Potável , Humanos , Estados Unidos , Chumbo , Cidades , Isótopos/análise , Indústrias , Monitoramento Ambiental
13.
Neurotoxicology ; 95: 107-116, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642386

RESUMO

Pb can enhance blood-cerebrospinal fluid barrier (BCSFB) permeability and accumulate in brain tissue, leading to central nervous system (CNS) dysfunction. Choroid plexus (CP) epithelial cells are the main components of the BCSFB with crucial functions in BCSFB maintenance. However, the mechanism by which Pb exposure affects CP epithelial cells remains unclear. Here, ferroptosis was identified as the major programmed cell death modality by sophisticated high-throughput sequencing and biochemical investigations in primary cultured CP epithelial cells following Pb exposure. Bioinformatics analysis using the ferroptosis database revealed that 16 ferroptosis-related genes were differentially expressed in primary cultured CP epithelial cells following Pb exposure. Among them, Gpx4, Slc7a11, Tfrc, and Slc40a1 were hub ferroptosis-related genes. In addition, CP epithelial cells can be impaired when the concentration of the Pb2+ reached 2050 µg/L (10 µM PbAc), which included the decrease of cell viability, Gpx4 and Slc7a11 proteins expression, etc. Moreover, inhibition of ferroptosis enhanced CP epithelial cell viability and reduced BCSFB permeability in vitro following Pb exposure. In summary, ferroptosis of CP epithelial cells is involved in BCSFB dysfunction following Pb exposure. Gpx4, Slc7a11, Tfrc, and Slc40a1 are hub ferroptosis-related genes in CP epithelial cells.


Assuntos
Ferroptose , Chumbo , Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Chumbo/metabolismo , Ferro/metabolismo
14.
Chem Biol Interact ; 370: 110310, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36539177

RESUMO

Lead (Pb), as a heavy metal, is used in batteries, ceramics, paint, pipes, certain ceramics, e-waste recycling, etc. Chronic Pb exposure can result in the inflammation of the central nervous system, as well as neurobehavioral changes. Both glial cells and neurons are involved in central nervous injury following Pb exposure. However, significant cellular events and their key regulators following Pb exposure remain to be elucidated. In this study, rats were randomly exposed to 250 or 500 mg/L PbAc for 9 weeks. Hippocampal proteomics was performed using isobaric tags for relative absolute quantification. Bioinformatics analysis was used to identify 301 and 267 differentially expressed proteins-which were involved in biological processes, including glial cell activation, neural nucleus development, and mRNA processing-in the low and high Pb exposure groups, respectively. Gene Set Enrichment Analysis showed that astrocyte activation was identified as a significant cellular event occurring in the low- or high-dose Pb exposure group. Subsequently, in vivo and in vitro models of Pb exposure were established to confirm astrocyte activation. As a result, glial fibrillary acidic protein expression in astrocytes was much higher in the Pb exposure group. Moreover, the mRNA expression of neurotoxic reactive astrocyte genes was much higher than that of the control group. The analysis of transcription factors indicated that NF-κB was screened as the top transcription factor, which might regulate astrocyte activation following Pb exposure in the rat hippocampus. The data also showed that the inhibition of NF-κB transcription suppressed astrocyte activation following Pb exposure. Overall, astrocyte activation was one of the significant cellular events following Pb exposure in the rat hippocampus, which was regulated by the NF-κB transcription factor, suggesting that inhibiting astrocyte activation may be a potential target for the prevention of Pb neurotoxicity.


Assuntos
Chumbo , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Chumbo/toxicidade , Astrócitos/metabolismo , Proteômica , Hipocampo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
J Ethnopharmacol ; 304: 116024, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36549369

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendrum viscosum is an important medicinal plant in Ayurveda in Bangladesh and its leaves are used as a remedy for various diseases such as anti-inflammatory, antibacterial, hyperglycemic, hepatoprotective effects. AIM OF THE STUDY: The present study aimed to evaluate the protective effect of aqueous extract of C. viscosum leaves against Pb-induced neurobehavioral and biochemical changes in mice. MATERIALS AND METHODS: Swiss albino mice were divided as a) control, b) lead treated (Pb) and c) C. viscosum leaves (Cle) d) Pb plus Cle groups. Pb-acetate (10 mg/kg body weight) was given to Pb and Pb + Cle groups mice, and water extract of leaves (50 mg/kg body weight) was provided as supplementation to Cle and Pb + Cle groups mice for 30 days. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. Status of cholinesterase, SOD, GSH enzyme activity and neurotoxicity markers such BDNF and Nrf2 levels were analyzed in the brain tissue of experimental mice. RESULTS: Poorer learning, inferior spatial memory, and increased anxiety-like behavior in Pb-exposure mice were noted when compared to control mice in Morris water maze and elevated plus maze test, respectively. In addition, expression of BDNF and Nrf2, cholinesterase activity along with antioxidant activity were significantly reduced compared to control group (p < 0.01). Interestingly, C. viscosum leaves' aqueous extract supplementation in Pb-exposed mice provide a significant improved neurochemical and antioxidant properties through the augmentation of activity of cholinergic enzymes, and upregulation of BDNF and Nrf2 levels in the brain tissue compared to Pb-exposed mice. CONCLUSIONS: This study suggested that C. viscosum leaves restore the cognitive dysfunction and reduce anxiety-like behavior through upregulation of BDNF mediated Akt-Nrf2 pathway in Pb-exposure mice.


Assuntos
Clerodendrum , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulação para Cima , Chumbo/toxicidade , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Memória Espacial , Colinesterases , Peso Corporal , Aprendizagem em Labirinto
16.
J Sci Food Agric ; 103(5): 2653-2663, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36326575

RESUMO

BACKGROUND: The mechanism of multifactorial spermatogenesis impairment is unclear. This study aimed to investigate the reproductive toxicity of lead (Pb) in mice fed a high-fat diet (HFD) and to delineate the important role of gut microbiota. RESULTS: Results showed that, compared with mice fed a normal diet (ND), Pb exposure caused more severe spermatogenesis impairment in HFD-fed mice, including decreased sperm count and motility, seminiferous tubule injury, serum and intratesticular testosterone decline, and downregulated expression level of spermatogenesis-related genes. Besides, 16S sequencing indicated that HFD-fed mice had increased severity of gut microbiota dysbiosis by Pb exposure compared to ND-fed mice. With fecal microbiota transplantation, the same trend of spermatogenesis impairment occurred in recipient mice, which confirmed the important role of gut microbiota. Moreover, probiotics supplementation restored the gut microbial ecosystem, and thus improved spermatogenic function. CONCLUSION: Our work suggested that a population with HFD might face more reproductive health risks upon Pb exposure, and revealed an intimate linkage between microbiota dysbiosis and spermatogenesis impairment, accompanied by the potential usefulness of probiotics as prophylactic and therapeutic. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Masculino , Camundongos , Animais , Dieta Hiperlipídica , Obesidade/metabolismo , Chumbo , Disbiose/metabolismo , Sêmen/metabolismo , Espermatogênese , Camundongos Endogâmicos C57BL
17.
Front Public Health ; 10: 1000403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311639

RESUMO

The relationship between lead exposure and neurological disorders has been extensively studied, but the effects of lead exposure on hepatotoxicity are unknown. Metabolically related fatty liver disease (MAFLD) is an update of previous non-alcoholic fatty liver disease (NAFLD). It redefines the diagnostic conditions and emphasizes metabolic factors while considering non-alcoholic factors. Lead can affect the endocrine system and metabolism, so we believe that lead exposure may contribute to MAFLD. 41,723 individuals who had undergone blood lead testing from 2005 to 2018 in the National Health and Nutrition Examination Survey (NHANES) database were selected for this study. The characteristics of population lead exposure in the last decade or so, the effect of lead exposure on liver function and whether lead exposure can cause MAFLD were analyzed. Co-variates were adjusted according to age, ethnicity, body mass index (BMI), waist circumference, visceral adiposity index (VAI), poverty indices (PIR), diabetes, hypertension, and hyperlipidemia. The results showed that blood lead concentrations stabilized at a low level after a decreasing trend from year to year. The differences in blood lead concentrations were associated with differences in age, sex, race, education level, and PIR. Lead exposure was an independent risk factor for MAFLD, and lead and nine other factors were used as independent risk factors for MAFLD, so a nomogram was established to predict the prevalence probability of MAFLD.


Assuntos
Chumbo , Hepatopatia Gordurosa não Alcoólica , Humanos , Prevalência , Chumbo/efeitos adversos , Inquéritos Nutricionais , Nomogramas , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/etiologia
18.
Ecotoxicology ; 31(7): 1068-1077, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36006498

RESUMO

Old lead-zinc (Pb-Zn) mining sites in Greenland have increased the environmental concentration of Pb in local marine organisms, including the shorthorn sculpin. Organ metal concentrations and histopathology have been used in environmental monitoring programs to evaluate metal exposure and subsequent effects in shorthorn sculpins. So far, no study has reported the impact of heavy metals on gene expression involved in metal-related stress and immune responses in sculpins. The aim of this study was to investigate the effect of exposure to environmentally relevant waterborne Pb (0.73 ± 0.35 µg/L) on hepatic gene expression of metallothionein (mt), immunoglobulin M (igm), and microRNAs (miRNAs; mir132 and mir155) associated with immune responses in the shorthorn sculpin compared to a control group. The mt and igm expression were upregulated in the Pb-exposed group compared to the control group. The transcripts of mir132 and mir155 were not different in sculpins between the Pb-exposed and control group; however, miRNA levels were significantly correlated with Pb liver concentrations. Furthermore, there was a positive correlation between liver Pb concentrations and igm, and a positive relationship between igm and mir155. The results indicate that exposure to Pb similar to those concentrations reported in in marine waters around Greenland Pb-Zn mine sites influences the mt and immune responses in shorthorn sculpins. This is the first study to identify candidate molecular markers in the shorthorn sculpins exposed to waterborne environmentally relevant Pb suggesting mt and igm as potential molecular markers of exposure to be applied in future assessments of the marine environment near Arctic mining sites.


Assuntos
MicroRNAs , Perciformes , Animais , Monitoramento Ambiental , Imunoglobulina M , Chumbo/toxicidade , MicroRNAs/genética , Mineração
19.
Front Nutr ; 9: 934118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928850

RESUMO

Lead (Pb) exposure during early life has been associated with an increased risk of neurodevelopmental disorders, including learning and memory deficits. The intestinal flora, via the microbiome-gut-brain axis, could play a significant role in the nervous system. However, the effects of probiotics on ameliorating Pb-induced learning and memory deficits are still unclear. In this study, we showed that adolescent Pb exposure (150 ppm) for 2 months impaired spatial learning and memory ability, accompanied by the decreasing diversity of gut microbiota, and the decreasing abundance of Lactobacillus at the genus level. Surprisingly, administration of the Lactobacillus rhamnosus GR-1 (1010 organisms/rat/day), not L. rhamnosus LGG or Lactobacillus reuteri RC-14, reversed learning and memory deficits induced by Pb exposure. Meanwhile, administration of the L. rhamnosus GR-1 increased the diversity of the gut microbiota composition and partially normalized the genus level of Lactobacillus, Parabacteroides, Enterococcus, and Akkermansia in Pb-exposed rats. Notably, supplementation of L. rhamnosus GR-1 decreased the gut permeability of Pb-exposed rats, reduced proinflammatory cytokines [interleukin-1ß (IL-1ß) and IL-6] expression, and promoted anti-inflammatory cytokines [granulocyte colony-stimulating factor (G-CSF)] expression. Interestingly, neural cell treatment with G-CSF rescued Pb-induced neurotoxicity. In general, L. rhamnosus GR-1 supplementation recovered the Pb-induced loss of intestinal bacteria (Lactobacillus), which may have reversed the damage to learning and memory ability. Collectively, our findings demonstrate an unexpectedly pivotal role of L. rhamnosus GR-1 in Pb-induced cognitive deficits and identify a potential probiotic therapy for cognitive dysfunction during early life.

20.
Toxics ; 10(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35736912

RESUMO

Lead (Pb) is an environmental neurotoxicant that has been associated with a wide range of adverse health conditions, and which originates from both anthropogenic and natural sources. In California, the city of Santa Ana represents an urban environment where elevated soil lead levels have been recently reported across many disadvantaged communities. In this study, we pursued a community-engaged research approach through which trained "citizen scientists" from the surrounding Santa Ana community volunteered to collect soil samples for heavy metal testing, a subset of which (n = 129) were subjected to Pb isotopic analysis in order to help determine whether contamination could be traced to specific and/or anthropogenic sources. Results showed the average 206Pb/204Pb ratio in shallow soil samples to be lower on average than deep samples, consistent with shallow samples being more likely to have experienced historical anthropogenic contamination. An analysis of soil Pb enrichment factors (EFs) demonstrated a strong positive correlation with lead concentrations, reinforcing the likelihood of elevated lead levels being due to anthropogenic activity, while EF values plotted against 206Pb/204Pb pointed to traffic-related emissions as a likely source. 206Pb/204Pb ratios for samples collected near historical urban areas were lower than the averages for samples collected elsewhere, and plots of 206Pb/204Pb against 206Pb/207 showed historical areas to exhibit very similar patterns to those of shallow samples, again suggesting lead contamination to be anthropogenic in origin, and likely from vehicle emissions. This study lends added weight to the need for health officials and elected representatives to respond to community concerns and the need for soil remediation to equitably protect the public.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA