Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.055
Filtrar
1.
J Environ Sci (China) ; 147: 688-713, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003083

RESUMO

Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.


Assuntos
Acetaminofen , Espécies Reativas de Oxigênio , Acetaminofen/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/química , Oxirredução , Preparações Farmacêuticas/metabolismo
2.
Mol Clin Oncol ; 21(4): 68, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39091416

RESUMO

The treatment outcomes of patients with unresectable rectal cancer are complex, and concurrent chemoradiation therapy is the main treatment option. Radiosensitizers can enhance the effect of localized intratumoral hypoxia, contributing to local control and symptomatic relief. The present study evaluated the feasibility and safety of radiosensitization using hydrogen peroxide combined with radiation therapy (RT) in patients with unresectable rectal cancer. A total of 13 patients with rectal cancer were recruited in the present study. Radiosensitization was performed twice weekly in combination with RT. Gauze soaked in 3% hydrogen peroxide solution was inserted into the anus, ensuring firm contact with the lesion. In total, 45-65 Gy was delivered in 25-33 fractions to the whole pelvis from four directions using 10 MV X-rays 5 days per week. Acute and late adverse events were evaluated 1 and 6 months after the completion of RT. Treatment was well tolerated, with no acute grade 3 or worse events noted, and no patient developed rectal fistula, necrosis, obstruction, perforation, stenosis, ulcer or retroperitoneal hemorrhage. No notable late adverse events, beyond 6 months, were observed at the end of the analysis. All patients experienced pain relief, hemostatic effects and tumor shrinkage. Therefore, the use of a hydrogen peroxide solution-soaked gauze in the rectum may be a promising option for patients with inoperable rectal tumors. The limitations of the present study are that the patient population was small and the observation time was relatively short. This study was retrospectively registered with the University Hospital Medical Information Network Center (trial registration no. R000061902) on April 21, 2024.

3.
Med Phys ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092902

RESUMO

BACKGROUND: Ultrahigh dose-rate radiation (UHDR) produces less hydrogen peroxide (H2O2) in pure water, as suggested by some experimental studies, and is used as an argument for the validity of the theory that FLASH spares the normal tissue due to less reactive oxygen species (ROS) production. In contrast, most Monte Carlo simulation studies suggest the opposite. PURPOSE: We aim to unveil the effect of UHDR on H2O2 production in pure water and its underlying mechanism, to serve as a benchmark for Monte Carlo simulation. We hypothesized that the reaction of solvated electrons ( e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ ) removing hydroxyl radicals (•OH), the precursor of H2O2, is the reason why UHDR leads to a lower G-value (molecules/100 eV) for H2O2 (G[H2O2]), because: 1, the third-order reaction between e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ and •OH is more sensitive to increased instantaneous ROS concentration by UHDR than a two-order reaction of •OH self-reaction producing H2O2; 2, e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ has two times higher diffusion coefficient and higher reaction rate constant than that of •OH, which means e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ would dominate the competition for •OH and benefit more from the inter-track effect of UHDR. Meanwhile, we also experimentally verify the theory of long-lived radicals causing lower G(H2O2) in conventional irradiation, which is mentioned in some simulation studies. METHODS AND MATERIALS: H2O2 was measured by Amplex UltraRed assay. 430.1 MeV/u carbon ions (50 and 0.1 Gy/s), 9 MeV electrons (600 and 0.62 Gy/s), and 200 kV x-ray tube (10 and 0.1 Gy/s) were employed. For three kinds of water (real hypoxic: 1% O2; hypoxic: 1% O2 and 5% CO2; and normoxic: 21% O2), unbubbled and bubbled samples with N2O, the scavenger of e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , were irradiated by carbon ions and electrons with conventional and UHDR at different absolute dose levels. Normoxic water dissolved with sodium nitrate (NaNO3), another scavenger of e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , and bubbled with N2O was irradiated by x-ray to verify the results of low-LET electron beam. RESULTS: UHDR leads to a lower G(H2O2) than conventional irradiation. O2 and CO2 can both increase G(H2O2). N2O increases G(H2O2) of both UHDR and conventional irradiation and eliminates the difference between them for carbon ions. However, N2O decreases G(H2O2) in electron conventional irradiation but increases G(H2O2) in the case of UHDR, ending up with no dose-rate dependency of G(H2O2). Three-spilled carbon UHDR does not have a lower G(H2O2) than one-spilled UHDR. However, the electron beam shows a lower G(H2O2) for three-spilled UHDR than for one-spilled UHDR. Normoxic water with N2O or NaNO3 can both eliminate the dose rate dependency of H2O2 production for x-ray. CONCLUSIONS: UHDR has a lower G(H2O2) than the conventional irradiation for both high LET carbon and low LET electron and x-ray beams. Both scavengers for e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , N2O and NaNO3, eliminate the dose-rate dependency of G(H2O2), which suggests e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ is the reason for decreased G(H2O2) for UHDR. Three-spilled UHDR versus one-spilled UHDR indicates that the assumption of residual radicals reducing G(H2O2) of conventional irradiation may only be valid for low LET electron beam.

4.
Small ; : e2403947, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948958

RESUMO

Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.

5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000492

RESUMO

Oxidative stress can damage neuronal cells, greatly contributing to neurodegenerative diseases (NDs). In this study, the protective activity of arzanol, a natural prenylated α-pyrone-phloroglucinol heterodimer, was evaluated against the H2O2-induced oxidative damage in trans-retinoic acid-differentiated (neuron-like) human SH-SY5Y cells, widely used as a neuronal cell model of neurological disorders. The pre-incubation (for 2 and 24 h) with arzanol (5, 10, and 25 µM) significantly preserved differentiated SH-SY5Y cells from cytotoxicity (MTT assay) and morphological changes induced by 0.25 and 0.5 mM H2O2. Arzanol reduced the generation of reactive oxygen species (ROS) induced by 2 h oxidation with H2O2 0.5 mM, established by 2',7'-dichlorodihydrofluorescein diacetate assay. The 2 h incubation of differentiated SH-SY5Y cells with H2O2 determined a significant increase in the number of apoptotic cells versus control cells, evaluated by propidium iodide fluorescence assay (red fluorescence) and NucView® 488 assay (green fluorescence). Arzanol pre-treatment (2 h) exerted a noteworthy significant protective effect against apoptosis. In addition, arzanol was tested, for comparison, in undifferentiated SH-SY5Y cells for cytotoxicity and its ability to protect against H2O2-induced oxidative stress. Furthermore, the PubChem database and freely accessible web tools SwissADME and pkCSM-pharmacokinetics were used to assess the physicochemical and pharmacokinetic properties of arzanol. Our results qualify arzanol as an antioxidant agent with potential neuroprotective effects against neuronal oxidative stress implicated in NDs.


Assuntos
Apoptose , Diferenciação Celular , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Pironas/farmacologia
6.
Chemphyschem ; : e202400568, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004996

RESUMO

A DFT analysis of the Fenton and Fenton-like reactions points out that the pH effect on the nature of the oxidizing intermediate formed is due to a pKa of the peroxide when hydroperoxides are used. When S2O82- is used, the pH effect is due to the pKa of one of the water ligands of the central iron cation. The results suggest that the choice of the hydroperoxide and the ligands present affects the pH at which the transition from the formation of hydroxyl radicals to the formation of FeIV=Oaq occurs.

7.
Water Sci Technol ; 90(1): 384-397, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007326

RESUMO

Fe(II) is of great importance in iron-based advanced oxidation processes. However, traditional methods to maintain Fe(II) concentration, such as the addition of chelating agents or reducing agents, may lead to an increase in chemical oxygen demand of secondary pollution. Therefore, in this study, iron sulfides, namely ferrous sulfide (FeS), pyrite (FeS2), and sulfidated nanoscale zero-valent iron (S-nZVI), were applied for not only the regeneration of Fe(II) but also the direct dissolution of Fe(II). Nanoscale calcium peroxide (nCaO2) was synthesized and used as the oxidant. The removal of 1,2-dichloroethane (1,2-DCA) were significantly promoted from 8.8 to 98.2, 79.2, and 80.8% with the aid of FeS, FeS2, and S-nZVI within 180 min, respectively. The dominant reactive oxygen species were demonstrated and their steady-state concentrations were quantified. Besides, the dechlorination of 1,2-DCA reached 90.4, 69.5, and 83.9% in nCaO2/Fe(III) systems coupled with FeS, FeS2, and S-nZVI, respectively. All three systems had high tolerance to the complex water conditions, of which FeS-enhanced nCaO2/Fe(III) system displayed the best performance, which could be recommended to put into practice for the remediation of 1,2-DCA contaminated groundwater.


Assuntos
Dicloretos de Etileno , Ferro , Peróxidos , Sulfetos , Poluentes Químicos da Água , Dicloretos de Etileno/química , Peróxidos/química , Sulfetos/química , Ferro/química , Poluentes Químicos da Água/química , Compostos Férricos/química , Purificação da Água/métodos , Compostos Ferrosos
8.
Methods Mol Biol ; 2839: 31-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008246

RESUMO

Elemental analysis can provide trace concentrations of iron and other transition elements at nanomolar (µg/L) concentrations in whole bacterial and mammalian cells, subcellular compartments, biological fluids, and tissues. The best method of analysis is by far Inductively Coupled Plasma Mass Spectrometry (ICP-MS). I describe here a very general method for the sample preparation, instrument settings, method development, and analysis. The method can be extended to up to 20 common elements in biological samples.


Assuntos
Ferro , Espectrometria de Massas , Ferro/análise , Espectrometria de Massas/métodos , Humanos , Animais
9.
Polymers (Basel) ; 16(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39000617

RESUMO

Due to the specificity, high efficiency, and gentleness of enzyme catalysis, the industrial utilization of enzymes has attracted more and more attention. Immobilized enzymes can be recovered/recycled easily compared to their free forms. The primary benefit of immobilization is protection of the enzymes from harsh environmental conditions (e.g., elevated temperatures, extreme pH values, etc.). In this paper, catalase was successfully immobilized in a poly(aryl ether sulfone) carrier (PAES-C) with tunable pore structure as well as carboxylic acid side chains. Moreover, immobilization factors like temperature, time, and free-enzyme dosage were optimized to maximize the value of the carrier and enzyme. Compared with free enzyme, the immobilized-enzyme exhibited higher enzymatic activity (188.75 U g-1, at 30 °C and pH 7) and better thermal stability (at 60 °C). The adsorption capacity of enzyme protein per unit mass carrier was 4.685 mg. Hydrogen peroxide decomposition carried out in a continuous-flow reactor was selected as a model reaction to investigate the performance of immobilized catalase. Immobilized-enzymes showed a higher conversion rate (90% at 8 mL/min, 1 h and 0.2 g) compared to intermittent operation. In addition, PAES-C has been synthesized using dichlorodiphenyl sulfone and the renewable resource bisphenolic acid, which meets the requirements of green chemistry. These results suggest that PAES-C as a carrier for immobilized catalase could improve the catalytic activity and stability of catalase, simplify the separation of enzymes, and exhibit good stability and reusability.

10.
Plants (Basel) ; 13(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38999609

RESUMO

According to four field experiments, after the inoculation of Phaseolus vulgaris L. cultivar Ufimskaya with the commercial strain Bacillus subtilis 26D and the promising strain B. subtilis 10-4, it was found that inoculation with B. subtilis 10-4 improved seed productivity (SP) by 31-41% per plant, but only in dry years. In contrast, all 4 years of inoculation with B. subtilis 26D were ineffective or neutral. It was intended to determine the growing and biochemical characteristics of inoculated 7-day-old plants, which correlate with the field SP of bacterial preparations. The SP of inoculated plants (average of 4 years) correlated with root length (0.83), MDA content (-0.98), and catalase (CAT) activity in roots (-0.96) of week-old seedlings. High correlation coefficients between the H2O2 content in the roots and SP (0.89 and 0.77), as well as between the H2O2 content in shoots and SP (0.98 and 0.56), were observed only in two dry years, when the influence of bacteria was detected. These physiological indicators were identified as potential markers for predicting the effectiveness of the endophytic symbiosis between bean plants and B. subtilis strains. The findings may be used to develop effective microbial-based, eco-friendly technologies for bean production.

11.
Cureus ; 16(5): e61413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947674

RESUMO

Acne vulgaris is a multifaceted disease characterized by inflammatory and noninflammatory lesions. Topical combination therapies offer a multifaceted approach to acne treatment, with synergistic effects and a broad spectrum of action against multiple factors in acne pathogenesis in one single formulation. Clindamycin phosphate/benzoyl peroxide/adapalene, a combination therapy consisting of clindamycin phosphate 1.2%, benzoyl peroxide (BPO) 3.1%, and adapalene 0.15%, is a novel treatment, the only FDA-approved triple combination drug that offers effective treatment of acne vulgaris. This review aims to provide information on clindamycin phosphate/benzoyl peroxide/adapalene and review the literature on combination topical acne medications approved in the United States. This search was conducted on topical combination therapies for acne, their efficacy, adverse effects, and impacts on quality of life with a specific focus on the newly approved clindamycin phosphate/benzoyl peroxide/adapalene and its sub-component dyads, along with other combinations. PubMed, SCOPUS, Embase, Cochrane, and Web of Science databases were searched for publications in 2018-2023. Primary sources were given priority, and secondary sources such as other reviews were considered to supplement any missing information. It was found that various topical dyad and triad combinations exist for acne vulgaris, including adapalene/BPO, tazarotene/clindamycin, clindamycin/BPO, adapalene/clindamycin, topical tretinoin/azelaic acid, topical tretinoin/BPO, and clindamycin phosphate/benzoyl peroxide/adapalene. Dyad and triple combinations represent a promising, convenient solution for acne management, potentially improving patient adherence due to its single formulation. Clindamycin phosphate/benzoyl peroxide/adapalene exhibited significantly high efficacy in treating both inflammatory and noninflammatory lesions, a minimal side effect profile, although no significant changes in quality-of-life measures. Further research is indicated to assess its long-term efficacy and impact on other acne metrics such as cost, scarring, psychosocial implications, and impact on diverse patient populations.

12.
J Colloid Interface Sci ; 675: 560-568, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986329

RESUMO

Artificial photosynthesis of hydrogen peroxide (H2O2) is a hopeful alternative to the industrial anthraquinone process. However, rational fabrication of the photocatalysts for the production of H2O2 without any sacrificial agents is still a formidable challenge. Herein, two kinds of linear conjugated polymers (LCPs) including pyridinic N functionalized polymer (DEB-N2) and pyridinic N non-contained polymer (DEB-N0) were successfully synthesized. DEB-N2 displays enhanced light capturing ability and good dispersion in water, leading to a substantial initial H2O2 generation rate of 3492µmol g-1h-1 as well as remarkable photocatalytic stability in pure water. Furthermore, the temperature programmed desorption (TPD) and density functional theory (DFT) analysis reveal that highly electronegative pyridine-N atoms in DEB-N2 boost the adsorption affinity of oxygen molecules, which facilitates the occurrence of the oxygen reduction reaction, therefore enhancing the performance of photocatalytic H2O2 production. This study unveils that the presence of pyridinic N in DEB-N2 has a significant impact on photocatalytic H2O2 production, suggesting the precise manipulation of the chemical structure of polymer photocatalysts is essential to achieve efficient solar-to-chemical energy conversion.

13.
J Mol Model ; 30(8): 246, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960908

RESUMO

CONTEXT: Bisphenols are one of the main components of bio-oil, produced during the pyrolysis of lignin-containing biomass. Synthetic bisphenols are used in polycarbonate plastics, epoxy resins, and thermal papers. Their mechanism of oxidation is important for the determination of the fire safety of these materials and the possibility of using them as additives in fuels for the decrease and description of ignition delays, as well as for the determination of their health risk assessment in medicine. One representative of bisphenols is p-benzylphenol (p-PhCH2PhOH), which is formed during the fast pyrolysis of lignine-containing biomass. Its thermochemistry of oxidation has been partially studied previously. It is shown that the reaction of chain oxidation of p-PhCH2PhOH is thermochemically favorable at low temperatures. However, these studies consider only two pathways of this reaction: (1) the chain oxidation of RH by RO2• and (2) the tautomerization of R'HO2• to R'O2H with following production of R'O• and OH radicals. At the same time, the reactions of intramolecular rearrangement of RO2•, produced PhC(O)H and •PhOH or HOPhC(O)H and •Ph, are not reported but can be an important part of its oxidation mechanism. METHODS: The five DFT (M06-2X (i = 1), B3LYP (i = 2), wB97XD (i = 3), M08HX (i = 4), MN15 (i = 5)) approaches with 6-311 + + G(d,p) basis set are used for the determination of standard enthalpies of atomization (ΔraH°(Xi)) of considered compounds (molecules, radicals, and transition states). These values of ΔraH°(Xi) are corrected using the empirical linear calibration dependencies, reported previously. The different calibration dependencies are used for the hydrocarbons (including the aromatics and simple oxygenated derivatives) and for the peroxides. The corrected values of ΔraH°(Xi, CORR) are used according to Hess's law for the determination of ΔfH°(Xi, CORR). The most consistent values of ΔfH°(X, MEAN) are derived from the coordination of the values of ΔfH°(Xi,CORR) using the intersection of their values of standard deviations (3SDi). These values of ΔfH°(X, MEAN), as well as the B3LYP values of S°(X), which are accounting the frequencies correction and internal rotations, as well as their temperature dependencies, are used for the determination of thermochemistry of considered reactions and of the calculation, within transition state theory (TST), of the values of high pressure limits of the rate constant. The values of H°(Xi), S°(Xi), and G°(Xi) are calculated using the Gaussian 16w program. The considered mechanism is prepared using ISIS/Draw package. The temperature dependencies of thermochemical properties and the values of rate constants are determined using the ChemRate program (v.1.5). The optimized structures are visualized using the Chemcraft package.

14.
Subcell Biochem ; 104: 33-47, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963482

RESUMO

Catalases are essential enzymes for removal of hydrogen peroxide, enabling aerobic and anaerobic metabolism in an oxygenated atmosphere. Monofunctional heme catalases, catalase-peroxidases, and manganese catalases, evolved independently more than two billion years ago, constituting a classic example of convergent evolution. Herein, the diversity of catalase sequences is analyzed through sequence similarity networks, providing the context for sequence distribution of major catalase families, and showing that many divergent catalase families remain to be experimentally studied.


Assuntos
Catalase , Evolução Molecular , Catalase/química , Catalase/genética , Catalase/metabolismo , Humanos , Animais , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Heme/química , Heme/metabolismo
15.
Odontology ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963521

RESUMO

To evaluate the physical properties of enamel submitted to hydrogen peroxide (HP) incorporated with titanium dioxide nanoparticles (NP) co-doped with nitrogen and fluorine and irradiated with violet LED light (LT). Enamel-dentin disks were randomly allocated (T0) into groups, according to HP (HP6, HP15, or HP35) and NP (no NP, 5NP, or 10NP) concentrations, and irradiated or not with LT. A negative control (NC) group was set. After three bleaching sessions (T1, T2, and T3), specimens were stored in saliva for 14 days (T4). Enamel surface microhardness number (KHN), surface roughness (Ra), cross-sectional microhardness (ΔS), energy-dispersive spectroscopy (EDS), scanning electron (SEM), and polarized light (PLM) microscopies were performed. Surface KHN was significantly influenced by NP over time, independently of LT irradiation. At T3 and T4, gels with 5NP and 10NP exhibited no KHN differences compared to NC and baseline values, which were not observed under the absence of NP. NP incorporation did not statistically interfere with the ΔS and Ra. PLM images exhibited surface/subsurface darkening areas suggestive of demineralizing regions. SEM demonstrated some intraprismatic affection in the groups without NP. EDS reported a higher enamel calcium to phosphorus ratio following 10NP gels applications. Gels with NP maintained the enamel surface microhardness levels and seemed to control surface morphology, upholding the mineral content. None of the proposed experimental protocols have negatively influenced the enamel surface roughness and the cross-sectional microhardness.

16.
Arh Hig Rada Toksikol ; 75(2): 147-154, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963138

RESUMO

Mistakes in translation are mostly associated with toxic effects in the cell due to the production of functionally aberrant and misfolded proteins. However, under certain circumstances mistranslation can have beneficial effects and enable cells to preadapt to other stress conditions. Mistranslation may be caused by mistakes made by aminoacyl-tRNA synthetases, essential enzymes that link amino acids to cognate tRNAs. There is an Escherichia coli strain expressing isoleucyl-tRNA synthetase mutant variant with inactivated editing domain which produces mistranslated proteomes where valine (Val) and norvaline (Nva) are misincorporated into proteins instead of isoleucine. We compared this strain with the wild-type to determine the effects of such mistranslation on bacterial growth in oxidative stress conditions. When the cells were pre-incubated with 0.75 mmol/L Nva or 1.5 mmol/L Val or Nva and exposed to hydrogen peroxide, no beneficial effect of mistranslation was observed. However, when the editing-deficient strain was cultivated in medium supplemented with 0.75 mmol/L Val up to the early or mid-exponential phase of growth and then exposed to oxidative stress, it slightly outgrew the wild-type grown in the same conditions. Our results therefore show a modest adaptive effect of isoleucine mistranslation on bacterial growth in oxidative stress, but only in specific conditions. This points to a delicate balance between deleterious and beneficial effects of mistranslation.


Assuntos
Escherichia coli , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Peróxido de Hidrogênio
17.
Mater Today Bio ; 27: 101119, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38966042

RESUMO

Cancer represents a significant threat to human health, with the use of traditional chemotherapy drugs being limited by their harsh side effects. Tumor-targeted nanocarriers have emerged as a promising solution to this problem, as they can deliver drugs directly to the tumor site, improving drug effectiveness and reducing adverse effects. However, the efficacy of most nanomedicines is hindered by poor penetration into solid tumors. Nanomotors, capable of converting various forms of energy into mechanical energy for self-propelled movement, offer a potential solution for enhancing drug delivery to deep tumor regions. External force-driven nanomotors, such as those powered by magnetic fields or ultrasound, provide precise control but often necessitate bulky and costly external equipment. Bio-driven nanomotors, propelled by sperm, macrophages, or bacteria, utilize biological molecules for self-propulsion and are well-suited to the physiological environment. However, they are constrained by limited lifespan, inadequate speed, and potential immune responses. To address these issues, nanomotors have been engineered to propel themselves forward by catalyzing intrinsic "fuel" in the tumor microenvironment. This mechanism facilitates their penetration through biological barriers, allowing them to reach deep tumor regions for targeted drug delivery. In this regard, this article provides a review of tumor microenvironment-activatable nanomotors (fueled by hydrogen peroxide, urea, arginine), and discusses their prospects and challenges in clinical translation, aiming to offer new insights for safe, efficient, and precise treatment in cancer therapy.

18.
Small ; : e2403029, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966884

RESUMO

Hydrogen peroxide (H2O2) plays a pivotal role in advancing sustainable technologies due to its eco-friendly oxidizing capability. The electrochemical two-electron (2e-) oxygen reduction reaction and water oxidation reaction present an environmentally green method for H2O2 production. Over the past three years, significant progress is made in the field of carbon-based metal-free electrochemical catalysts (C-MFECs) for low-cost and efficient production of H2O2 (H2O2EP). This article offers a focused and comprehensive review of designing C-MFECs for H2O2EP, exploring the construction of dual-doping configurations, heteroatom-defect coupling sites, and strategic dopant positioning to enhance H2O2EP efficiency; innovative structural tuning that improves interfacial reactant concentration and promote the timely release of H2O2; modulation of electrolyte and electrode interfaces to support the 2e- pathways; and the application of C-MFECs in reactors and integrated energy systems. Finally, the current challenges and future directions in this burgeoning field are discussed.

19.
Small ; : e2404139, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970540

RESUMO

Since 2020, covalent organic frameworks (COFs) are emerging as robust catalysts for the photosynthesis of hydrogen peroxide (H2O2), benefiting from their distinct advantages. However, the current efficiency of H2O2 production and solar-to-chemical energy conversion efficiency (SCC) remain suboptimal due to various constraints in the reaction mechanism. Therefore, there is an imperative to propose efficiency improvement strategies to accelerate the development of this reaction system. This comprehensive review delineates recent advances, challenges, and strategies in utilizing COFs for photocatalytic H2O2 production. It explores the fundamentals and challenges (e.g., oxygen (O2) mass transfer rate, O2 adsorption capacity, response to sunlight, electron-hole separation efficiency, charge transfer efficiency, selectivity, and H2O2 desorption) associated with this process, as well as the advantages, applications, classification, and preparation strategies of COFs for this purpose. Various strategies to enhance the performance of COFs in H2O2 production are highlighted. The review aims to stimulate further advancements in utilizing COFs for photocatalytic H2O2 production and discusses potential prospects, challenges, and application areas in this field.

20.
CNS Neurosci Ther ; 30(7): e14865, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39042604

RESUMO

Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.


Assuntos
Ferroptose , AVC Isquêmico , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA