RESUMO
Following blastocyst hatching, ungulate embryos undergo a prolonged preimplantation period termed conceptus elongation. Conceptus elongation constitutes a highly susceptible period for embryonic loss, and the embryonic requirements during this process are largely unknown, but multiple lipid compounds have been identified in the fluid nourishing the elongating conceptuses. Peroxisome proliferator-activated receptors mediate the signaling actions of prostaglandins and other lipids, and, between them, PPARG has been pointed out to play a relevant role in conceptus elongation by a functional study that depleted PPARG in both uterus and conceptus. The objective of this study has been to determine if embryonic PPARG is required for bovine embryo development. To that aim, we have generated bovine PPARG knock-out embryos in vitro using two independent gene ablation strategies and assessed their developmental ability. In vitro development to Day 8 blastocyst was unaffected by PPARG ablation, as total, inner cell mass, and trophectoderm cell numbers were similar between wild-type and knock-out D8 embryos. In vitro post-hatching development to D12 was also comparable between different genotypes, as embryo diameter, epiblast cell number, embryonic disk formation, and hypoblast migration rates were unaffected by the ablation. The development of tubular stages equivalent to E14 was assessed in vivo, following a heterologous embryo transfer experiment, observing that the development of extra-embryonic membranes and of the embryonic disk was not altered by PPARG ablation. In conclusion, PPARG ablation did not impaired bovine embryo development up to tubular stages.
Assuntos
Desenvolvimento Embrionário , PPAR gama , Animais , Bovinos/embriologia , Desenvolvimento Embrionário/fisiologia , PPAR gama/metabolismo , PPAR gama/genética , Feminino , Blastocisto/metabolismo , Blastocisto/fisiologia , Embrião de Mamíferos , Técnicas de Cultura Embrionária , Técnicas de Inativação de GenesRESUMO
OBJECTIVE: There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. METHODS: Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. RESULTS: According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. CONCLUSION: In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.
RESUMO
Background: Peroxisome proliferator-activated receptor gamma (PPARG) plays some roles in preventing liver disease progression to hepatocellular carcinoma. However, there is limited information about the function of PPARG of in hepatocellular carcinoma. This study aimed to determine the significance of PPARG in immunological response and as a biomarker for hepatocellular carcinoma survival. Methods: We investigated the expression, prognosis, Kyoto Encyclopedia of Genes and Genomes/Gene Ontology biological process enrichment, and immune significance of PPARG using data from three databases-The Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus-through bioinformatics analysis as well as experimental verification in proliferation function of PPARG in HepG2 cell. Results: High PPARG expression in hepatocellular carcinoma tissues positively correlated with TP53 mutation, and predicted poor prognosis. The results of enrichment and immune infiltration showed that PPARG negatively correlated with the complement system and macrophage infiltration, and laboratory results support that PPARG regulate proliferation of HepG2 cell. Conclusions: PPARG is upregulated in hepatocellular carcinoma and it correlates with a worse prognosis. Moreover, PPARG may play an important role in the cell proliferation, complement system and immune cell infiltration in hepatocellular carcinoma.
RESUMO
Major depressive disorder and other neuropsychiatric disorders are often managed with long-term use of antidepressant medication. Fluoxetine, an SSRI antidepressant, is widely used as a first-line treatment for neuropsychiatric disorders. However, fluoxetine has also been shown to increase the risk of metabolic diseases such as non-alcoholic fatty liver disease. Fluoxetine has been shown to increase hepatic lipid accumulation in vivo and in vitro. In addition, fluoxetine has been shown to alter the production of prostaglandins which have also been implicated in the development of non-alcoholic fatty liver disease. The goal of this study was to assess the effect of fluoxetine exposure on the prostaglandin biosynthetic pathway and lipid accumulation in a hepatic cell line (H4-II-E-C3 cells). Fluoxetine treatment increased mRNA expression of prostaglandin biosynthetic enzymes (Ptgs1, Ptgs2, and Ptgds), PPAR gamma (Pparg), and PPAR gamma downstream targets involved in fatty acid uptake (Cd36, Fatp2, and Fatp5) as well as production of 15-deoxy-Δ12,14 PGJ2 a PPAR gamma ligand. The effects of fluoxetine to induce lipid accumulation were attenuated with a PTGS1 specific inhibitor (SC-560), whereas inhibition of PTGS2 had no effect. Moreover, SC-560 attenuated 15-deoxy-Δ12,14 PGJ2 production and expression of PPAR gamma downstream target genes. Taken together these results suggest that fluoxetine-induced lipid abnormalities appear to be mediated via PTGS1 and its downstream product 15d-PGJ2 and suggest a novel therapeutic target to prevent some of the adverse effects of fluoxetine treatment.
Assuntos
Transtorno Depressivo Maior , Fluoxetina , Hepatopatia Gordurosa não Alcoólica , Ciclo-Oxigenase 2/genética , Transtorno Depressivo Maior/tratamento farmacológico , Fluoxetina/efeitos adversos , Humanos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , PPAR gama/metabolismoRESUMO
Abnormal placental vasculature is associated with preeclampsia. Preeclampsia is of two types, i.e., early- and late-onset preeclampsia (LOP), both having different etiologies. We have earlier demonstrated low levels of omega-3 fatty acids and vitamin E in women with preeclampsia. The current study examines the effect of maternal omega-3 fatty acids and vitamin E supplementation on angiogenic factors in a rat model of preeclampsia. Pregnant rats were divided into a total of five groups control, early-onset preeclampsia (EOP); LOP; EOP supplemented with omega-3 fatty acid and vitamin E and LOP supplemented with omega-3 fatty acid and vitamin E. Preeclampsia was induced by administering L-nitroarginine methylester (L-NAME) at the dose of 50 mg/kg body weight/day. The vascular endothelial growth factor gene expression and protein levels were lower (p < 0.01 for both) in animals from both EOP as well as LOP groups (p < 0.01). In the EOP group, the protein levels of VEGF receptor-1 were also lower (p < 0.01). Supplementation of omega-3 fatty acids and vitamin E to LOP improved the levels of VEGF and VEGF receptor-1 only in the LOP but not in the EOP group. In the EOP group, the gene expression of hypoxia inducible factor 1 alpha (HIF-1α) in the placenta was higher (p < 0.05) and supplementation normalized these levels. Our findings indicate that maternal supplementation of omega-3 fatty acids and vitamin E has differential effect on preeclampsia subtypes.