Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.306
Filtrar
1.
J Cardiovasc Magn Reson ; : 101077, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39098573

RESUMO

BACKGROUND: This study aimed to validate respiratory-resolved 5D flow MRI against real-time 2D phase contrast MRI, assess the impact of number of respiratory states, and measure the impact of respiration on hemodynamics in congenital heart disease (CHD) patients. METHODS: Respiratory-resolved 5D flow MRI derived net and peak flow measurements were compared to real-time 2D phase contrast MRI derived measurements in 10 healthy volunteers. Pulmonary to systemic flow ratios (Qp:Qs) were measured in 19 CHD patients and aortopulmonary collateral burden was measured in 5 Fontan patients. Additionally, the impact of number of respiratory states on measured respiratory-driven net flow changes was investigated in 10 healthy volunteers and 19 CHD patients (shunt physiology, n=11, single ventricle disease (SVD), n=8). RESULTS: There was good agreement between 5D flow MRI and real-time 2D phase contrast derived net and peak flow. Respiratory driven changes had good correlation (rho=0.64, p<0.001). In healthy volunteers, fewer than four respiratory states reduced measured respiratory driven flow changes in veins (5.2mL/cycle, p<0.001) and arteries (1.7mL/cycle, p=0.05). Respiration drove substantial venous net flow changes in SVD (64% change) and shunt patients (57% change). Respiration had significantly greater impact in SVD patients compared to shunt patients in the right and left pulmonary arteries (46% vs 15%, p=0.003 & 59% vs 20%, p=0.002). Qp:Qs varied by 37±24% over respiration in SVD patients and 12±20% in shunt patients. Aortopulmonary collateral burden varied by 118±84% over respiration in Fontan patients. The smallest collateral burden was measured during active inspiration in all patients and the greatest burden was during active expiration in 4 of 5 patients. Reduced respiratory resolution blunted measured flow changes in the caval veins of shunt and SVD patients (p<0.005). CONCLUSIONS: Respiratory-resolved 5D flow MRI measurements agree with real-time 2D phase contrast. Venous measurements are sensitive to number of respiratory states, whereas arterial measurements are more robust. Respiration has substantial impact on caval vein flow, Qp:Qs, and collateral burden in CHD patients.

2.
Int J Cardiol ; 413: 132391, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39059472

RESUMO

BACKGROUND: Liver fibrosis has been recognized as a long-term morbidity associated with Fontan circulation (Fontan-associated liver disease, FALD). The pathophysiology of FALD is not completely understood and abnormal flow dynamics may be associated with this condition. Liver hemodynamics can be quantitatively evaluated with four-dimensional phase-contrast flow magnetic resonance imaging (4D PC flow MRI). The study aimed to evaluate suitability of liver 4D PC flow MRI in Fontan patients and relate flow measurements to normal values and FALD severity. PATIENTS AND METHODS: Twenty-two Fontan patients were examined by 4D PC flow MRI at 1.5 Tesla to assess mesenteric, portal, splenic, and hepatic venous blood flow. Severity of FALD was graded based on routine screening, including abdominal ultrasound and laboratory tests. RESULTS: Median age was 18.5 (interquartile range, IQR 15.5-20.2) years. FALD was graded as "none or mild" in 16 and as "moderate to severe" in six cases. Ten patients presented at least one feature of portal hypertension (ascites, splenomegaly, or thrombocytopenia). For the entire cohort, blood flow in the superior mesenteric, splenic, and portal vein was lower than reported in the literature. No significant differences were observed in relation to FALD severity. Features of portal hypertension were associated with a higher splenic vein blood flow (0.34 ± 0.17 vs. 0.20 ± 0.07 l/min, p = 0.046). Splenic vein blood flow was negatively correlated to platelet count (r = -0.590, p = 0.005). CONCLUSIONS: 4D PC flow MRI appears suitable to assess liver hemodynamics in Fontan patients and integration into clinical follow-up might help to improve our understanding of FALD.

3.
Matrix Biol Plus ; 23: 100155, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39049903

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder caused by pathogenic mutations in FBN1. In bone, the protein fibrillin-1 is found in the extracellular matrix where it provides structural support of elastic fiber formation, stability for basement membrane, and regulates the bioavailability of growth factors. Individuals with MFS exhibit a range of skeletal complications including low bone mineral density and long bone overgrowth. However, it remains unknown if the bone phenotype is caused by alteration of fibrillin-1's structural function or distortion of its interactions with bone cells. To assess the structural effects of the fibrillin-1 mutation, we characterized bone curvature, microarchitecture, composition, porosity, and mechanical behavior in the Fbn1 C1041G/+ mouse model of MFS. Tibiae of 10, 26, and 52-week-old female Fbn1 C1041G/+ and littermate control (LC) mice were analyzed. Mechanical behavior was assessed via in vivo strain gauging, finite element analysis, ex vivo three-point bending, and nanoindentation. Tibial bone morphology and curvature were assessed with micro computed tomography (µCT). Bone composition was measured with Fourier transform infrared (FTIR) imaging. Vascular and osteocyte lacunar porosity were assessed by synchrotron computed tomography. Fbn1 C1041G/+ mice exhibited long bone overgrowth and osteopenia consistent with the MFS phenotype. Trabecular thickness was lower in Fbn1 C1041G/+ mice but cortical bone microarchitecture was similar in Fbn1 C1041G/+ and LC mice. Whole bone curvature was straighter below the tibio-fibular junction in the medial-lateral direction and more curved above in LC compared to Fbn1 C1041G/+ mice. The bone matrix crystallinity was 4 % lower in Fbn1 C1041G/+ mice compared to LC, implying that mineral platelets in LCs have greater crystal size and perfection than Fbn1 C1041G/+ mice. Structural and mechanical properties were similar between genotypes. Cortical diaphyseal lacunar porosity was lower in Fbn1 C1041G/+ mice compared to LC; this was a result of the average volume of an individual osteocyte lacunae being smaller. These data provide valuable insights into the bone phenotype and its contribution to fracture risk in this commonly used mouse model of MFS.

4.
ACS Sens ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082162

RESUMO

There is an increasing need for simple-to-use, noninvasive, and rapid tools to identify and separate various cell types or subtypes at the single-cell level with sufficient throughput. Often, the selection of cells based on their direct biological activity would be advantageous. These steps are critical in immune therapy, regenerative medicine, cancer diagnostics, and effective treatment. Today, live cell selection procedures incorporate some kind of biomolecular labeling or other invasive measures, which may impact cellular functionality or cause damage to the cells. In this study, we first introduce a highly accurate single-cell segmentation methodology by combining the high spatial resolution of a phase-contrast microscope with the adhesion kinetic recording capability of a resonant waveguide grating (RWG) biosensor. We present a classification workflow that incorporates the semiautomatic separation and classification of single cells from the measurement data captured by an RWG-based biosensor for adhesion kinetics data and a phase-contrast microscope for highly accurate spatial resolution. The methodology was tested with one healthy and six cancer cell types recorded with two functionalized coatings. The data set contains over 5000 single-cell samples for each surface and over 12,000 samples in total. We compare and evaluate the classification using these two types of surfaces (fibronectin and noncoated) with different segmentation strategies and measurement timespans applied to our classifiers. The overall classification performance reached nearly 95% with the best models showing that our proof-of-concept methodology could be adapted for real-life automatic diagnostics use cases. The label-free measurement technique has no impact on cellular functionality, directly measures cellular activity, and can be easily tuned to a specific application by varying the sensor coating. These features make it suitable for applications requiring further processing of selected cells.

5.
Radiol Phys Technol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028437

RESUMO

In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T2-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T2-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.

6.
Front Neurol ; 15: 1411182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978814

RESUMO

Introduction: New diagnostic techniques are a substantial research focus in degenerative cervical myelopathy (DCM). This cross-sectional study determined the significance of cardiac-related spinal cord motion and the extent of spinal stenosis as indicators of mechanical strain on the cord. Methods: Eighty-four DCM patients underwent MRI/clinical assessments and were classified as MRI+ [T2-weighted (T2w) hyperintense lesion in MRI] or MRI- (no T2w-hyperintense lesion). Cord motion (displacement assessed by phase-contrast MRI) and spinal stenosis [adapted spinal canal occupation ratio (aSCOR)] were related to neurological (sensory/motor) and neurophysiological readouts [contact heat evoked potentials (CHEPs)] by receiver operating characteristic (ROC) analysis. Results: MRI+ patients (N = 31; 36.9%) were more impaired compared to MRI- patients (N = 53; 63.1%) based on the modified Japanese Orthopedic Association (mJOA) subscores for upper {MRI+ [median (Interquartile range)]: 4 (4-5); MRI-: 5 (5-5); p < 0.01} and lower extremity [MRI+: 6 (6-7); MRI-: 7 (6-7); p = 0.03] motor dysfunction and the monofilament score [MRI+: 21 (18-23); MRI-: 24 (22-24); p < 0.01]. Both patient groups showed similar extent of cord motion and stenosis. Only in the MRI- group displacement identified patients with pathologic assessments [trunk/lower extremity pin prick score (T/LEPP): AUC = 0.67, p = 0.03; CHEPs: AUC = 0.73, p = 0.01]. Cord motion thresholds: T/LEPP: 1.67 mm (sensitivity 84.6%, specificity 52.5%); CHEPs: 1.96 mm (sensitivity 83.3%, specificity 65.6%). The aSCOR failed to show any relation to the clinical assessments. Discussion: These findings affirm cord motion measurements as a promising additional biomarker to improve the clinical workup and to enable timely surgical treatment particularly in MRI- DCM patients. Clinical trial registration: www.clinicaltrials.gov, NCT02170155.

7.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007822

RESUMO

Two-directional beam-tracking (2DBT) is a method for phase-contrast imaging and tomography that uses an intensity modulator to structure the X-ray beam into an array of independent circular beamlets that are resolved by a high-resolution detector. It features isotropic spatial resolution, provides two-dimensional phase sensitivity, and enables the three-dimensional reconstructions of the refractive index decrement, δ, and the attenuation coefficient, µ. In this work, the angular sensitivity and the spatial resolution of 2DBT images in a synchrotron-based implementation is reported. In its best configuration, angular sensitivities of ∼20 nrad and spatial resolution of at least 6.25 µm in phase-contrast images were obtained. Exemplar application to the three-dimensional imaging of soft tissue samples, including a mouse liver and a decellularized porcine dermis, is also demonstrated.

8.
J Synchrotron Radiat ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39007825

RESUMO

The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100 keV. The photon source generated by a 2.9 T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13 µm down to 0.33 µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.

9.
Cell Struct Funct ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085139

RESUMO

Although quantitative analysis of biological images demands precise extraction of specific organelles or cells, it remains challenging in broad-field grayscale images, where traditional thresholding methods have been hampered due to complex image features. Nevertheless, rapidly growing artificial intelligence technology is overcoming obstacles. We previously reported the fine-tuned apodized phase-contrast microscopy system to capture high-resolution, label-free images of organelle dynamics in unstained living cells (Shimasaki, K. et al. (2024). Cell Struct. Funct., 49:21-29). We here showed machine learning-based segmentation models for subcellular targeted objects in phase-contrast images using fluorescent markers as origins of ground truth masks. This method enables accurate segmentation of organelles in high-resolution phase-contrast images, providing a practical framework for studying cellular dynamics in unstained living cells.Key words: Label-free imaging, Organelle dynamics, Apodized phase contrast, Deep learning-based segmentation.

10.
Comput Biol Med ; 179: 108836, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968764

RESUMO

Automated identification of cardiac vortices is a formidable task due to the complex nature of blood flow within the heart chambers. This study proposes a novel approach that algorithmically characterizes the identification criteria of these cardiac vortices based on Lagrangian Averaged Vorticity Deviation (LAVD). For this purpose, the Recurrent All-Pairs Field Transforms (RAFT) is employed to assess the optical flow over the Phase Contrast Magnetic Resonance Imaging (PC-MRI), and to construct a continuous blood flow velocity field and reduce errors that arise from the integral process of LAVD. Additionally, Generalized Hough Transform (GHT) is applied for automated depiction of the structure of cardiac vortices. The effectiveness of this method is demonstrated and validated by the computation of the acquired cardiac flow data. The results of this comprehensive visual and analytical study show that the evolution of cardiac vortices can be effectively described and displayed, and the RAFT framework for optical flow can synthesize the in-between PC-MRIs with high accuracy. This allows cardiologists to acquire a deeper understanding of intracardiac hemodynamics and its impact on cardiac functional performance.


Assuntos
Algoritmos , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Coração/fisiologia , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
11.
Life (Basel) ; 14(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38929644

RESUMO

Theoretical and experimental approaches have been applied to study the polymer physics underlying the compaction of DNA in the bacterial nucleoid. Knowledge of the compaction mechanism is necessary to obtain a mechanistic understanding of the segregation process of replicating chromosome arms (replichores) during the cell cycle. The first part of this review discusses light microscope observations demonstrating that the nucleoid has a lower refractive index and thus, a lower density than the cytoplasm. A polymer physics explanation for this phenomenon was given by a theory discussed at length in this review. By assuming a phase separation between the nucleoid and the cytoplasm and by imposing equal osmotic pressure and chemical potential between the two phases, a minimal energy situation is obtained, in which soluble proteins are depleted from the nucleoid, thus explaining its lower density. This theory is compared to recent views on DNA compaction that are based on the exclusion of polyribosomes from the nucleoid or on the transcriptional activity of the cell. These new views prompt the question of whether they can still explain the lower refractive index or density of the nucleoid. In the second part of this review, we discuss the question of how DNA segregation occurs in Escherichia coli in the absence of the so-called active ParABS system, which is present in the majority of bacteria. How is the entanglement of nascent chromosome arms generated at the origin in the parental DNA network of the E. coli nucleoid prevented? Microscopic observations of the position of fluorescently-labeled genetic loci have indicated that the four nascent chromosome arms synthesized in the initial replication bubble segregate to opposite halves of the sister nucleoids. This implies that extensive intermingling of daughter strands does not occur. Based on the hypothesis that leading and lagging replichores synthesized in the replication bubble fold into microdomains that do not intermingle, a passive four-excluding-arms model for segregation is proposed. This model suggests that the key for segregation already exists in the structure of the replication bubble at the very start of DNA replication; it explains the different patterns of chromosome arms as well as the segregation distances between replicated loci, as experimentally observed.

12.
Radiol Case Rep ; 19(8): 3517-3521, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38881625

RESUMO

Dual-energy or spectral computed tomography (CT) information may be obtained by either sending X-ray beams of different energy spectra through the patient or by discriminating the energy of the X-rays that reach the detector. The spectral signal is then used to generate multiple results: conventional, virtual monoenergetic (MonoE), effective atomic number, electron density, and other material specific (e.g., iodine, calcium, or uric acid). This report demonstrates the potential benefits of spectral CT imaging during percutaneous tumor ablation procedures, specifically regarding visualization of inconspicuous tumors, accurate probe placement, and assessment of treatment efficacy.

13.
J Synchrotron Radiat ; 31(Pt 4): 896-909, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843003

RESUMO

Signal-to-noise ratio and spatial resolution are quantitatively analysed in the context of in-line (propagation based) X-ray phase-contrast imaging. It is known that free-space propagation of a coherent X-ray beam from the imaged object to the detector plane, followed by phase retrieval in accordance with Paganin's method, can increase the signal-to-noise in the resultant images without deteriorating the spatial resolution. This results in violation of the noise-resolution uncertainty principle and demonstrates `unreasonable' effectiveness of the method. On the other hand, when the process of free-space propagation is performed in software, using the detected intensity distribution in the object plane, it cannot reproduce the same effectiveness, due to the amplification of photon shot noise. Here, it is shown that the performance of Paganin's method is determined by just two dimensionless parameters: the Fresnel number and the ratio of the real decrement to the imaginary part of the refractive index of the imaged object. The relevant theoretical analysis is performed first, followed by computer simulations and then by a brief test using experimental images collected at a synchrotron beamline. More extensive experimental tests will be presented in the second part of this paper.

14.
J Synchrotron Radiat ; 31(Pt 4): 923-935, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861370

RESUMO

X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.

15.
Sci Rep ; 14(1): 14329, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907041

RESUMO

A comprehensive grasp of the myocardial micro-architecture is essential for understanding diverse heart functions. This study aimed to investigate three-dimensional (3D) cardiomyocyte arrangement in the laminar structure using X-ray phase-contrast microtomography. Using the ID-19 beamline at the European Synchrotron Radiation Facility, we imaged human left ventricular (LV) wall transparietal samples and reconstructed them with an isotropic voxel edge length of 3.5 µm. From the reconstructed volumes, we extracted different regions to analyze the orientation distribution of local cardiomyocyte aggregates, presenting findings in terms of helix and intrusion angles. In regions containing one sheetlet population, we observed cardiomyocyte aggregates running along the local LV wall's radial direction at the border of sheetlets, branching and merging into a complex network around connecting points of different sheetlets, and bending to accommodate vessel passages. In regions with two sheetlet populations, the helix angle of local cardiomyocyte aggregates experiences a nonmonotonic change, and some cardiomyocyte aggregates run along the local radial direction. X-ray phase-contrast microtomography is a valuable technique for investigating the 3D local myocardial architecture at microscopic level. The arrangement of local cardiomyocyte aggregates in the LV wall proves to be both regional and complex, intricately linked to the local laminar structure.


Assuntos
Ventrículos do Coração , Imageamento Tridimensional , Miócitos Cardíacos , Microtomografia por Raio-X , Microtomografia por Raio-X/métodos , Humanos , Miócitos Cardíacos/citologia , Imageamento Tridimensional/métodos , Ventrículos do Coração/diagnóstico por imagem , Miocárdio/citologia
16.
J Xray Sci Technol ; 32(4): 1163-1175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38943421

RESUMO

BACKGROUND: Typical propagation-based X-ray phase contrast imaging (PB-PCI) experiments using polyenergetic sources are tested in very ideal conditions: low-energy spectrum (mainly characteristic X-rays), small thickness and homogeneous materials considered weakly absorbing objects, large object-to-detector distance, long exposure times and non-clinical detector. OBJECTIVE: Explore PB-PCI features using boundary conditions imposed by a low power polychromatic X-ray source (X-ray spectrum without characteristic X-rays), thick and heterogenous materials and a small area imaging detector with high low-detection radiation threshold, elements commonly found in a clinical scenario. METHODS: A PB-PCI setup implemented using a microfocus X-ray source and a dental imaging detector was characterized in terms of different spectra and geometric parameters on the acquired images. Test phantoms containing fibers and homogeneous materials with close attenuation characteristics and animal bone and mixed soft tissues (bio-sample models) were analyzed. Contrast to Noise Ratio (CNR), system spatial resolution and Kerma values were obtained for all images. RESULTS: Phase contrast images showed CNR up to 15% higher than conventional contact images. Moreover, it is better seen when large magnifications (>3) and object-to-detector distances (>13 cm) were used. The influence of the spectrum was not appreciable due to the low efficiency of the detector (thin scintillator screen) at high energies. CONCLUSIONS: Despite the clinical boundary condition used in this work, regarding the X-ray spectrum, thick samples, and detection system, it was possible to acquire phase contrast images of biological samples.


Assuntos
Imagens de Fantasmas , Animais , Raios X , Humanos
17.
J Appl Crystallogr ; 57(Pt 3): 707-713, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846762

RESUMO

Propagation-based phase contrast, for example in the form of edge enhancement contrast, is well established within X-ray imaging but is not widely used in neutron imaging. This technique can help increase the contrast of low-attenuation samples but may confuse quantitative absorption measurements. Therefore, it is important to understand the experimental parameters that cause and amplify or dampen this effect in order to optimize future experiments properly. Two simulation approaches have been investigated, a wave-based simulation and a particle-based simulation conducted in McStas [Willendrup & Lefmann (2020). J. Neutron Res. 22, 1-16], and they are compared with experimental data. The experiment was done on a sample of metal foils with weakly and strongly neutron absorbing layers, which were measured while varying the rotation angle and propagation distance from the sample. The experimental data show multiple signals: attenuation, phase contrast and reflection. The wave model reproduces the sample attenuation and the phase peaks but it does not reproduce the behavior of these peaks as a function of rotation angle. The McStas simulation agrees better with the experimental data, as it reproduces attenuation, phase peaks and reflection, as well as the change in these signals as a function of rotation angle and distance. This suggests that the McStas simulation approach, where the particle description of the neutron facilitates the incorporation of multiple effects, is the most convenient way of modeling edge enhancement in neutron imaging.

18.
Microsc Microanal ; 30(3): 476-488, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38885145

RESUMO

4D STEM is an emerging approach to electron microscopy. While it was developed principally for high-resolution studies in materials science, the possibility to collect the entire transmitted flux makes it attractive for cryomicroscopy in application to life science and radiation-sensitive materials where dose efficiency is of utmost importance. We present a workflow to acquire tomographic tilt series of 4D STEM data sets using a segmented diode and an ultrafast pixelated detector, demonstrating the methods using a specimen of a T4 bacteriophage. Full integration with the SerialEM platform conveniently provides all the tools for grid navigation and automation of the data collection. Scripts are provided to convert the raw data to mrc format files and further to generate a variety of modes representing both scattering and phase contrasts, including incoherent and annular bright field, integrated center of mass, and parallax decomposition of a simulated integrated differential phase contrast. Principal component analysis of virtual annular detectors proves particularly useful, and axial contrast is improved by 3D deconvolution with an optimized point spread function. Contrast optimization enables visualization of irregular features such as DNA strands and thin filaments of the phage tails, which would be lost upon averaging or imposition of an inappropriate symmetry.

19.
Cell Struct Funct ; 49(1): 21-29, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38797697

RESUMO

Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.


Assuntos
Microscopia de Contraste de Fase , Microscopia de Contraste de Fase/métodos , Humanos , Animais , Organelas/ultraestrutura , Células HeLa
20.
Biomed Phys Eng Express ; 10(4)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38815565

RESUMO

X-ray phase-contrast imaging has become a valuable tool for biomedical research due to its improved contrast abilities over regular attenuation-based imaging. The recently emerged Talbot-Lau interferometer can provide quantitative attenuation, phase-contrast and dark-field image data, even with low-brilliance x-ray tube sources. Thus, it has become a valid option for clinical environments. In this study, we analyze the effects of x-ray tube voltage and total number of images on the contrast-to-noise ratio (CNR) and dose-weighted CNR (CNRD) calculated from tomographic transmission and phase-contrast data of a phantom sample. Constant counting statistics regardless of the voltage was ensured by adjusting the image exposure time for each voltage setting. The results indicate that the x-ray tube voltage has a clear effect on both image contrast and noise. This effect is amplified in the case of phase-contrast images, which is explained by the polychromatic x-ray spectrum and the dependence of interferometer visibility on the spectrum. CNRD is additionally affected by the total imaging time. While submerging the sample into a water container effectively reduces image artefacts and improves the CNR, the additional attenuation of the water must be compensated with a longer exposure time. This reduces dose efficiency. Both the CNR and CNRD are higher in the phase-contrast images compared to transmission images. For transmission images, and phase-contrast images without the water container, CNRD can be increased by using higher tube voltages (in combination with a lower exposure time). For phase-contrast images with the water container, CNRD is increased with lower tube voltages. In general, the CNRD does not strongly depend on the number of tomographic angles or phase steps used.


Assuntos
Interferometria , Imagens de Fantasmas , Doses de Radiação , Interferometria/métodos , Interferometria/instrumentação , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Humanos , Raios X , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA