Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.966
Filtrar
1.
Food Chem ; 462: 140956, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197243

RESUMO

The extraction of bioactive compounds is based on the application of various extraction techniques. Therefore, the stem and root bark of the plant species Morinda lucida L. were used in this research, while the extraction procedure was performed using three extraction techniques: HAE (homogenizer extraction), UAE (ultrasound extraction) as modern, and MAC (maceration) as conventional extraction technique. The presence of different classes of secondary metabolites was determined using the UHPLC method, while the content of total phenols and flavonoids was determined spectrophotometrically. The biological potential was investigated by in vitro antioxidant and enzyme assays. Different extraction technologies showed significant differences in only two classes of phenols, namely lignans and phenolic acids, which were significantly higher in HAE than in UAE and MAC. These findings highlight the significant effect of stem and bark extracts of M. lucida, opening the way for innovative industrial exploitation of these matrices.


Assuntos
Antioxidantes , Morinda , Fenóis , Extratos Vegetais , Morinda/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/isolamento & purificação , Casca de Planta/química , Fracionamento Químico/métodos , Caules de Planta/química , Raízes de Plantas/química
2.
Food Chem ; 462: 140806, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241684

RESUMO

Dried citrus peel (DCP), also called "Chen Pi", has edible and medicinal value. However, the specific differences among various sources remain unknown. Herein, we collected six DCP species, namely, one Citrus reticulata 'Chachi' (CZG) and five Citrus reticulata Blanco (CRB). Targeted high-performance liquid chromatography and untargeted ultra-high-performance liquid chromatography-tandem mass spectrometry were employed to comprehensively compare the phenolic compounds and metabolites in DCP. Interestingly, 13 different phenolic compounds were noted in DCP. The total phenolic compound content in all CRB samples (58.86-127.65 mg/g) was higher than that of CZG (39.47 mg/g). Untargeted metabolomic revealed 1495 compounds, with 115 differentially expressed metabolites for CRBs and CZG, particularly flavonoids (38), terpenoids (15), and phenolic acids and derivatives (9). Lastly, antioxidant assays revealed that all CRB samples exhibited higher antioxidant activities compared with CZG. Therefore, our study results provide a theoretical basis for the high-value utilization of citrus peels and their metabolites.


Assuntos
Antioxidantes , Citrus , Frutas , Metabolômica , Extratos Vegetais , Espectrometria de Massas em Tandem , Citrus/química , Citrus/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/análise , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/análise
3.
Food Chem ; 462: 140900, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39213973

RESUMO

Australian honey samples from four botanical genera (Lophostemon, Eucalyptus, Macadamia and Corymbia) were investigated for their phenolic content. An improved phenolic extraction and high-performance liquid chromatography-diode array detection (HPLC-DAD) analysis method allowed for the rapid and reliable identification of phenolic compounds. A concentrated liquid-liquid extraction method with an acidified aqueous solution and acetonitrile was optimised to isolate phenolic compounds from the honey matrix. The concentrated extraction method improved sensitivity and permitted the identification of phenolics present at low concentrations (LOD: 0.012-0.25 mg/kg and LOQ: 0.040-2.99 mg/kg). The optimised HPLC-DAD chromatographic conditions gave stable retention times, improved peak separation and allowed for the inexpensive detection of each of the 109 phenolic compounds at their maximum absorbance wavelength. Out of the 109 phenolic compounds included in this study, 49 were identified in the Australian honeys tested. Furthermore, 25 of the 49 compounds were determined to be markers specific to honey floral origin.


Assuntos
Eucalyptus , Mel , Fenóis , Mel/análise , Cromatografia Líquida de Alta Pressão , Fenóis/análise , Fenóis/química , Eucalyptus/química , Austrália , Flores/química
4.
Food Chem ; 462: 141020, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216377

RESUMO

The effects of preharvest methyl jasmonate (MeJA) spray application on the physicochemical quality, metabolism of phenolics, and cell wall components in raspberries were investigated during a 10-day cold storage period. MeJA spray reduced firmness loss, decay incidence, and weight loss, while maintained higher levels of soluble solids content, ascorbic acid, anthocyanins and flavonoids in raspberries. Furthermore, MeJA application resulted in increased total pectin and protopectin levels, as well as lowered water-soluble pectin, and activities of pectin methyl esterase, polygalacturonase and cellulase enzymes. Additionally, MeJA treatment upregulated the phenylpropanoid pathway, leading to higher endogenous phenolics and activities of phenylalanine-ammonia lyase and shikimate dehydrogenase. In conclusion, preharvest MeJA spray application could be adopted to enhance the storage potential of cold-stored raspberries for 10 days by maintaining higher firmness, assuring better physicochemical quality, and increasing phenolic metabolism, while reducing cell wall hydrolysis.


Assuntos
Acetatos , Antioxidantes , Parede Celular , Ciclopentanos , Armazenamento de Alimentos , Frutas , Oxilipinas , Fenóis , Rubus , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/química , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Fenóis/metabolismo , Antioxidantes/metabolismo , Acetatos/farmacologia , Acetatos/metabolismo , Frutas/metabolismo , Frutas/química , Frutas/efeitos dos fármacos , Rubus/metabolismo , Rubus/química , Conservação de Alimentos/métodos , Temperatura Baixa , Proteínas de Plantas/metabolismo
5.
Heliyon ; 10(19): e37951, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39386831

RESUMO

Numerous harmful phenolic contaminants are discharged into water that pose a serious threat to environment where two of the most important purification methodologies for the mitigation of phenolic contaminants are adsorption and photocatalysis. Besides cost, each process has drawbacks in terms of productivity, environmental impact, sludge creation, and the development of harmful by-products. To overcome these limitations, the modeling and optimization of water treatment methods is required. Artificial Intelligence (AI) is employed for the interpretation of treatment-based processes due to powerful learning, simplicity, high estimation accuracy, effectiveness, and improvement of process efficiency where artificial neural networks (ANNs) are most frequently employed for predicting and analyzing the efficiency of processes applied for the mitigation of these phenolic contaminants from water. ANNs are superior to conventional linear regression models because the latter are incapable of dealing with non-linear systems. ANNs can also reduce the operational cost of treating phenol-contaminated water. A correlation coefficient of >0.99 can be achieved using ANN with enhanced phenol mitigation percentage accuracy generally ranging from 80 % to 99.99 %. Using ANN optimization, the maximum phenol mitigation efficiencies achieved were 99.99 % for phenol, 99.93 % for bisphenol A, 99.6 % for nonylphenol, 97.1 % for 2-nitrophenol, 96.6 % for 4-chlorophenol and 90 % for 2,6-dichlorophenol. In numerous ANN models, Levenberg-Marquardt backpropagation algorithm for training was employed using MATLAB software. This study overviews their employment and application for optimization and modeling of removal processes and explicitly discusses the important input and output parameters necessary for better performance of the system. The comparison of ANNs with other AI techniques revealed that ANNs have better predictability for mitigation of most of the phenolic contaminants. Furthermore, several challenges and future prospects have also been discussed.

6.
Carbohydr Res ; 545: 109281, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39357144

RESUMO

Phenylethanoid glycosides are a well-studied class of bioactive compounds found throughout the plant kingdom. In contrast, research on the synthesis and pharmacological activity of phenacyl glycosides, a specific subgroup of phenylethanoid glycosides with a ketone functionality at the alpha position of the phenol ring, has been limited. In this study, we report the synthesis, cytotoxic, antiviral, and anti-inflammatory evaluation of a series of 18 4'-hydroxyphenacyl glycosides. These compounds consist of six different sugar residues (ß-d-glucose, ß-d-galactose, α-l-arabinose, ß-d-xylose, α-l-rhamnose, and ß-d-glucuronic acid) and display three distinct methoxylation patterns at the phenacyl ring, similar to the substitution motifs of anthocyanins. We obtained the target phenacyl glycosides in high yield and stereoselectivity through the coupling of benzoyl-protected trichloroacetimidate glycosyl donors and corresponding acetophenones. Our work represents the first total synthesis of the natural products 4'-hydroxyphenacyl-ß-d-glucopyranoside (1) and 4'-hydroxy-3'-methoxyphenacyl-ß-d-glucopyranoside (2). None of the phenacyl glycosides showed cytotoxicity against the tested cell lines. Notably, several of the synthesized compounds exhibited antiviral activity, with natural product 2 being the most active against herpes simplex virus type 1, while phenacyl arabinoside 9 and natural product 2 were the most active against human coronavirus OC43. Natural product 2 significantly inhibited the production of interleukin-6 in lipopolysaccharide-stimulated microglia cells. Overall, our findings highlight the importance of the sugar residue and phenacyl ring substitution pattern in modulating the antiviral activity of phenacyl glycosides. Natural product 2 and phenacyl arabinoside 9 emerge as promising leads for the development of antiviral agents.

7.
Mater Today Bio ; 29: 101249, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39351488

RESUMO

Inflammation is a major impediment to the healing of cartilage injuries, yet bioactive scaffolds suitable for cartilage repair in inflammatory environments are extremely rare. Herein, we utilized electrospinning to fabricate a two-dimensional nanofiber scaffold (2DS), which was then subjected to gas foaming to obtain a three-dimensional scaffold (3DS). 3DS was modified with metal phenolic networks (MPNs) composed of epigallocatechin gallate (EGCG) and strontium ions (Sr2+) to afford a MPNs-modified 3D scaffold (3DS-E). Gas-foamed scaffold exhibited multilayered structure conducive to cellular infiltration and proliferation. Compared to other groups, 3DS-E better preserved chondrocytes under interleukin (IL)-1ß induced inflammatory environment, showing less apoptosis of chondrocytes and higher expression of cartilage matrix. Additionally, 3DS-E facilitated the regeneration of more mature cartilage in vivo, reduced cell apoptosis, and decreased the expression of pro-inflammatory cytokines. Taken together, 3DS-E may offer an ideal candidate for cartilage regeneration.

8.
Colloids Surf B Biointerfaces ; 245: 114276, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39353348

RESUMO

Shell-by-Shell (SbS)-functionalized NPs can be tailor-made by combining a metal oxide NP core of choice with any desired phosphonic acids and amphiphiles as 1st or 2nd ligand shell building blocks. The complementary composition of such highly hierarchical structures makes them interesting candidates for various biomedical applications, as certain active ingredients can be incorporated into the structure. Here, we used TiO2 and CoFe2O4 NPs as drug delivery tools and coated them with a hexadecylphosphonic acid and with hexadecyl ammonium phenolates (caffeate, p-coumarate, ferulate), that possess anticancer as well as antioxidant properties. These architectures were then incubated in 2D and 3D cell cultures of non-tumorigenic and tumorigenic breast cells and irradiated to study their anticancer effect. It was found that both, the functionalized TiO2 and CoFe2O4 NPs acted as strong protective agents in non-tumorigenic spheroids. In contrast, the functionalized CoFe2O4 NPs induce a higher damage in irradiated tumor spheroids compared to the functionalized TiO2 NPs. CoFe3O4 NPs act additionally as radiosensitizing agents to the tumor spheroids. The radio-enhancement of the CoFe2O4 NPs is due to the generation of highly toxic hydroxyl radicals during X-ray irradiation. The irradiation exposed the CoFe2O4 surface, releasing the anticancer drugs into the cytoplasm and making the surface Co2+ ions accessible. These surface ions catalyze the Fenton reaction. This combination of radiosensitizer and anticancer drug delivery proved to be a very effective nanotherapeutic in 2D and 3D cell cultures of breast cancer cells.

9.
Chem Biodivers ; : e202401960, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367808

RESUMO

This study investigated the therapeutic effect of Conocarpus erectus leaves methanolic extract against AlCl3 -induced Alzheimer's disease (AD) in rats comparing with Donepezil-hydrochloride as a reference drug. The bioactive compounds of C. erectus leaves were isolated and identified by GC/MS and LC-ESI-MS analysis. Malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), amyloid-ß-peptide (Aß-peptide), tau protein, acetylcholinesterase (AChE), serotonin (5-HT), dopamine (DA) and nor-adrenaline (NE) levels were estimated. The neuromuscular strength, memory behavior and histopathological examination of cerebral cortex region were also conducted. Forty-three compounds were characterized from the non-polar fraction of C. erectus L. leaves extract and nineteen compounds were identified from the defatted extract. AlCl3- induction caused significant elevation of brain oxidative stress, Aß-peptide, tau protein, IL-6, TNF-α and AChE levels. A significant decrease in 5-HT, ND and DA levels were noticed. Additionally, AlCl3 reduced neuromuscular strength and compromised memory function. Treatment of AlCl3- induced rats with C. erectuse extract ameliorated these selected parameters by variable degrees. In conclusion, C. erectus protects against AlCl3- induced AD in rats through its antioxidant, anti-inflammatory, and antineutron damage. It could be considered as a new nutraceutical agent for attenuating symptoms associated with Alzheimer's disease.

10.
Food Chem ; 463(Pt 4): 141506, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39368202

RESUMO

To improve the stability and bioavailabilityhe of polyphenolics in Lycium barbarum leaf, this study encapsulated L. barbarum leaf extracts (LLE) within whey protein isolate (WPI) and bovine serum albumin (BSA) nanoparticles (NPs) via self-assembly to enhance polyphenol distribution. The physicochemical properties of nanoparticles were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric (TG), respectively. The nanoparticles also showed good physical stability at various temperatures, different pH and NaCl concentrations. Compared with BSA-LLE NPs, WPI-LLE NPs exhibited strong physical stability with encapsulation efficiency of 70.6 %. The polyphenol nanoparticles demonstrated enhanced stability in the presence of stomach acid during in vitro simulated digestion. Additionally, the nanoparticles enhanced polyphenol stability during simulated gastrointestinal digestion. Following intestinal digestion, compared with LLE, the bioaccessibility of total phenolic increased by 53.67 % (WPI-LLE NPs), with specific enhancement in compounds like kaempferol, rutin, and chlorogenic acid.

11.
Anat Cell Biol ; 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363566

RESUMO

Stroke is the most significant cause of disability worldwide. Despite mounting data supporting memory deficit after stroke, dysfunction and treatment effect mechanisms remain unknown. Phenolics can be found in a variety of fruits and vegetables. There is, however, a scarcity of research on the therapeutic potential of the phenolics fraction of Tetrapleura tetraptera (PTT) fruit against ischemic stroke-induced abnormalities in hippocampal tissue. The rats were divided into five groups: Group I, vehicle; group II, ischemia/reperfusion (I/R)+vehicle; group III, I/R+50 mg/kg minocycline (MNC); group IV, I/R+100 mg/kg PTT; and group V, I/R+200 mg/kg PTT. Ischemia was induced via bilateral common carotid artery occlusion for 30 minutes followed by reperfusion. PTT and MNC were intraorally administered daily for 7 days. Neurodegenerative changes, cornu ammonis 1 (CA1) and cornu ammonis 3 (CA3) pyramidal cell count, levels of oxidative stress indicators, and memory functions were assessed. Rats treated with PTT, as well as MNC compared to untreated I/R rats, showed a substantial (P<0.05) rise in catalase, superoxide dismutase, glutathione levels, as well as decreased lipid peroxidation and improved memory. I/R resulted in histoarchitectural distortions, a marked decrease (P<0.05) in the intensity of the Nissl substance, and a striking decrease (P<0.05) in the number of pyramidal cells in the CA1 and CA3. PTT and MNC-treated groups showed significant attenuation in all the above parameters. Taking together, these findings revealed that PTT attenuated oxidative stress, histologic alterations and substantially restored memory impairment in the I/R rat model.

12.
Plant Biol (Stuttg) ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367698

RESUMO

Flowering plants are essentially sessile organisms that disperse their genes through pollination, expanding their areas of occurrence through seed dispersal. In orchids, seed dispersal is commonly mediated by air currents. Conversely, members of several genera have evolved seeds adapted to endozoochory. This is the case for Vanilla, the most economically important genus in the orchid family. The role of indehiscent fruits in the attraction and rewarding of Vanilla seed dispersers was investigated based on field observations, analysis of fragrances, reward substances, and investigation of seed viability through the digestive tract. Indehiscent Vanilla fruits are consumed exclusively by herbivores, i.e. agoutis. Besides providing nutritional rewards, the fruits are rich in polyphenols that are unpalatable to omnivores. The most dominant compound in fruits is attractive only to agoutis. This is the first study showing synzoochory in Orchidaceae and specificity of seed dispersal in orchids. Indehiscent fruits may have evolved early in Neotropical Vanilla in response to selection pressures mediated by large herbivores as the genus emerged ca. 34 Mya in South America, concomitantly with megafauna diversification in the Oligocene. Extinction of the megafauna during the Pleistocene has left agoutis as inheritors of seed dispersal in species with large fleshy fruits. Apart from the effects on omnivores, this study shows that indehiscent fruits of V. chamissonis are consumed exclusively by agoutis, providing the first evidence of target mutualism in orchid seed dispersal.

13.
BMC Infect Dis ; 24(1): 1085, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354399

RESUMO

BACKGROUND: Treatment failure (TF) in leprosy following multidrug therapy (MDT) presents a significant challenge. The current World Health Organization (WHO) fixed-duration MDT regimen, based on lesion count, might not be adequate. Leprosy lacks clear-cut objective cure criteria, and the predictive value of post-MDT histopathological findings remains uncertain. This study aims to identify predictive factors for TF among leprosy patients who have completed the WHO-recommended MDT. METHODS: An analysis was conducted on 80 individuals from a national leprosy reference center, comprising 40 TF cases (with a mean relapse at 13.0 months) and 40 controls (with a mean of 113.1 months without disease signs). Various epidemiological and clinical-laboratory parameters were assessed post-MDT. RESULTS: In skin samples, the presence of foamy granuloma (OR = 7.36; 95%CI2.20-24.60; p = 0.0012) and histological bacillary index (hBI) ≥ 1+ (OR = 1.55; 95%CI1. 22-1.99; p = 0.0004) were significantly associated with TF, with odds ratios of 7.36 and 1.55, respectively. Individuals who experienced TF had a mean hBI of 3.02+ (SD ± 2.02), while the control group exhibited a mean hBI of 1.8+ (SD ± 1.88). An hBI ≥ 3 + showed a sensitivity of 73% and a specificity of 78% for TF detection (AUC: 0.75; p = 0.0001). Other histopathological features like epithelioid granulomas, and skin changes did not show significant associations (p > 0.05). Additionally, higher anti-phenolic glycolipid-I (anti-PGL-I) ELISA index (EI) levels were linked to a 1.4-fold increased likelihood for TF (OR = 1.4; 95%CI1.13-1.74; p = 0.0019). A mean EI of 4.48 (SD ± 2.80) was observed, with an EI ≥ 3.95 showing a sensitivity of 79% and a specificity of 59% for TF detection (AUC: 0.74; p = 0.0001). Moreover, the presence of Mycobacterium leprae (M. leprae) DNA in real-time polymerase chain reaction (qPCR) was associated with a 3.43-fold higher likelihood of TF. Multivariate regression analysis indicated that concurrent presentation of neural/perineural lymphocytic infiltrate, foamy granuloma, hBI ≥ 1+, and EI ≥ 1 markedly increased the likelihood of TF by up to 95.41%. CONCLUSION: Persistence of nerve-selective lymphocytic infiltrate, foamy granulomas, and bacilli in skin biopsies, and elevated EI post-MDT, may serve as predictive factors for identifying individuals at higher probability of TF.


Assuntos
Hanseníase , Falha de Tratamento , Humanos , Hanseníase/tratamento farmacológico , Hanseníase/patologia , Hanseníase/diagnóstico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Mycobacterium leprae/genética , Mycobacterium leprae/isolamento & purificação , Pele/patologia , Pele/microbiologia , Diagnóstico Precoce , Hansenostáticos/uso terapêutico , Adulto Jovem , Idoso , Adolescente
14.
Int J Biol Macromol ; 281(Pt 1): 136184, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357727

RESUMO

Plant-based proteins represent a more sustainable alternative, the approaches to modify and enhance their functionality and application are focused on. Covalent interaction could significantly modify the structure and function properties of protein. This study investigated the effects of covalent interaction between wheat gluten and tea polyphenols on the structure, aggregation, stability, and digestive properties of their covalent complex, as well as the possible action mechanism. The results showed that tea polyphenols could interact with gluten via covalent bonds (CN and/or CS), while tea polyphenols also acted as a bridge connecting gluten molecules, thus making covalent complex to show the larger particle sizes. This covalent interaction significantly changed the secondary structure, tertiary structure, and surface hydrophobicity of gluten. Moreover, covalent complex exhibited the high polyphenols bioaccessibility during in vitro digestion. The peptide bonds of covalent complex were mainly broken in gastric digestion, while the covalent bonds between tea polyphenols and gluten were completely destroyed in intestinal digestion. In addition, their digestates exhibited excellent antioxidant capability. All results suggest that wheat gluten have potential to prepare functional carrier for transporting active compounds and protecting them during digestion.

15.
N Biotechnol ; 84: 77-84, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357797

RESUMO

The extensive production of olive mill solid waste (OMSW) from olive oil industry in the Mediterranean basin claims effective treatments and valorization strategies. This study aims to elucidate the potential of anaerobic digestion (AD) and anaerobic fermentation (AF) to convert pre-treated OMSW into biogas (CH4) and volatile fatty acids (VFA), respectively. The two thermal treatment conditions (65 °C and 180 °C) that are being implemented in the industry that manages the OMSW were tested. Comparing the two treatments aims to demonstrate the influence on the AD process of the degree of solubilization and degradation of the metabolites produced from the same substrate. AD of OMSW treated at low-temperature (65 °C) exhibited similar methane yields (195 ± 8 mL CH4/g volatile solid (VS)) to raw OMSW. AD of the solid phase (SP) after high-temperature treatment with acid addition at 180 °C resulted in methane yields comparable to raw OMSW while the liquid phase (LP) exhibited low methane yields (85 ± 10 mL CH4/g VS). Nevertheless, LP/180 °C exhibited the highest VFA bioconversion at 27.6 %, compared to less than 10 % for SP/180 ºC, SP/65 °C, and raw OMSW. The VFA profile showed notable variations with thermal treatment temperatures. Propionic acid dominated at SP/65 °C, while acetic acid became the primary VFA at 180 °C. Furthermore, significant degradation rates of phenolic compounds and furans were observed during the final day of both anaerobic processes. Overall, these findings suggest that AD is more suitable for raw OMSW, treated at low temperature and SP at high temperature, while AF offers a promising alternative for high-temperature-treated LP.

16.
Plant Commun ; : 101139, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39354716

RESUMO

Root-knot nematodes (Meloidogyne spp.) have garnered significant attention from researchers due to their substantial damage to crops and worldwide distribution. However, controlling this nematode disease is challenging which results from limited chemical pesticides and biocontrol agents effective against them. Here, we demonstrate that pepper-rotation markedly reduces Meloidogyne incognita infection in cucumber and diminishes the presence of p-hydroxybenzoic acid in the soil, a compound known to exacerbate M. incognita infection. Pepper-rotation also structures the rhizobacterial community, leading to the colonization of two Pseudarthrobacter oxydans strains (RH60 and RH97) in the cucumber rhizosphere, facilitated by palmitic acid enrichment in pepper root exudates. Furthermore, both strains exhibit high nematocidal activity against M. incognita, and possess the ability to biosynthesize indoleacetic acid and biodegrade p-hydroxybenzoic acid. RH60 and RH97 additionally induce systemic resistance in cucumber plants and promote their growth. These data suggest that pepper root-exudate palmitic acid alleviates M. incognita infection by recruiting beneficial P. oxydans in the cucumber rhizosphere. Our analyses identify a novel chemical component in root exudates and uncover its pivotal role in crop rotation for disease attenuation, providing intriguing insights into the keystone function of root exudates in plant protection against root-knot nematode infection.

17.
Int J Phytoremediation ; : 1-12, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354853

RESUMO

The absorption of cadmium by plants largely depends on cadmium contamination in the soil. The development of phytomining and phytoremediation methods to clean cadmium-contaminated ecosystems is an urgent issue that needs to be solved. Therefore, the role of exogenous O-(2-naphthylsulfonyl)oxime (ANSO) to maize seedlings under cadmium stress was tested. The results showed that when ANSO+cadmium application was compared to cadmium, the cadmium content increased by 7.8 times, while the abscisic acid content decreased. Under cadmium stress, ANSO application did not change the relative water content, but increased the chlorophyll content. While carotenoid content increased with cadmium application, it increased further with ANSO+cadmium application. As a result of the positive effects of ANSO application on the antioxidant system under cadmium stress, hydrogen peroxide content, lipid peroxidation and proline content decreased. ANSO application under cadmium stress increased the phenolic substance content. This study shows that exogenous ANSO makes significant contributions to the protection of maize seedlings despite being under cadmium stress. It also provides important references to the fact that despite stress, the cadmium chelation mechanisms of seedlings continue to work actively to accumulate cadmium in tissues, and it has deep implications for the remediation of cadmium-polluted soils.


Exogenous acetone O-(2-naphthylsulfonyl)oxime increased the activity of maize defense systems. Moreover, it supported the continuity of the activity of defense systems by regulating the phenolic content of maize.The fact that acetone O-(2-naphthylsulfonyl)oxime causes 7.8 times more cadmium accumulation and the use of a newly synthesized substance in the phytoremediation of cadmium is one of the most innovative approaches.The acetone O-(2-naphthylsulfonyl)oxime molecule can not only make serious contributions to the industrialization of cadmium in Cd-polluted soils through phytoremediation and phytomining, but also make significant contributions to environmental protection.

18.
Plant Cell Environ ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39351860

RESUMO

Increasing desertification constitutes a global environmental problem, mainly driven by climate change and inappropriate land-use that limits agriculture, forestry and human colonization. The selection of suitable plant species to mitigate desertification is particularly challenging, as it usually requires simultaneous counteraction against a whole set of unfavourable environmental conditions, including heat, drought, high tropospheric ozone and salinity. It therefore seems useful to identify the survival strategies of plants native in desert environments. Date palm constitutes a plant species native in desert environments and cultivated worldwide in arid regions that have been studied intensively for stress defence during the last decade. The present review summarizes the current state of biochemical stress defence mechanisms including avoidance, osmotic and metabolic adjustments and reactive oxygen species scavenging, addresses whole-plant regulations and trade-off between stress compensation/defence and growth of date palms. The review advances our knowledge about how this typical desert species copes with both individual and multiple environmental stresses at the cellular to the whole-plant level, and identifies areas of future research required to fully understand the strategies of this plant species to survive in the desert, thereby contributing to efforts for the mitigation of climate change and desertification.

19.
Food Chem ; 463(Pt 4): 141510, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39369597

RESUMO

The sugarcane tip is abundant in phenolic compounds. Previous studies have concentrated on the effects of free polyphenols, while bound polyphenols were overlooked. In this study, the content of bound polyphenols (SPB) (31.9 ± 0.9 mg GAE/g DW) was significantly higher than free polyphenols (SPF) (3.4 ± 0.1 mg GAE/g DW). A total of 44 free and 31 bound phenolics were identified by the UPLC-EIS-QTOF-MS/MS. Moreover, the antioxidant activity of SPB was more pronounced, as evidenced by its higher ABTS+ and DPPH scavenging rates than SPF, which was attributed to the higher tannin content. Furthermore, at all tested concentrations (100 and 200 µg/mL), SPB significantly enhanced the survival and antioxidant enzyme activity of Caenorhabditis elegans (C. elegans), while concurrently reducing ROS levels. High concentrations of SPB even exhibited antioxidant activity comparable to Vitamin C (Vc). The collective findings strongly indicate that SPB holds great potential as an effective antioxidant.

20.
ChemSusChem ; : e202401827, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388347

RESUMO

The efficient conversion of lignin contributes to reducing human reliance on fossil energy. As a complicated biopolymer, studies on the mechanism of lignin depolymerization is limited by inadequate structural identification of high molecular weight (MW) products like heavy phenolics. Up to now, no individual method can generate both MW and structural information in operando conditions. As a promising approach, tandem mass spectrometry (MS/MS) techniques can provide structural information via the dissociation of target ions. In this study, MS/MS technique was performed both in offline and in-situ mode during lignin depolymerization. The fundamental guidelines based on MS/MS dissociation principles for typical inter-unit linkages like ß-O-4, 5-5, ß-ß, ß-5, and ß-1 were well established. Based on that, major phenolic dimers are successfully identified, including chemical formula and types of inter-unit linkages. More significantly, real-time monitoring of structural evolution was achieved by applying in-situ MS/MS analysis during lignin depolymerization. The results show the different evolution pathways of isomers with same chemical formula, confirming that structural changes during lignin depolymerization is common and obvious. Overall, this study develops an advanced strategy for the full-view analysis of lignin depolymerization, achieving the static analysis of composition and structure, both monitoring the dynamic evolution of structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA