Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 351: 109764, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875277

RESUMO

Phenyl valerate (PV) is a neutral substrate for measuring the PVase activity of neuropathy target esterase (NTE), a key molecular event of organophosphorus-induced delayed neuropathy. This substrate has been used to discriminate and identify other proteins with esterase activity and potential targets of organophosphorus (OP) binding. A protein with PVase activity in chicken (model for delayed neurotoxicity) was identified as butyrylcholinesterase (BChE). Further studies in human BChE suggest that other sites might be involved in PVase activity. From the theoretical docking analysis, other more favorable sites for binding PV related to the Asn289 residue located far from the catalytic site ("PVsite") were deduced.In this paper, we demonstrate that acetylcholinesterase is also able to hydrolyze PV. Robust kinetic studies of interactions between substrates PV and acetylthiocholine (AtCh) were performed. The kinetics did not fit the classic competition models among substrates. While PV interacts as a competitive inhibitor in AChE activity, AtCh at low concentrations enhances PVase activity and inhibits this activity at high concentrations. Kinetic behavior suggests that the potentiation effect is caused by thiocholine released at the active site, where AtCh could act as a Trojan Horse. We conclude that the products released at the active site could play an important role in the hydrolysis reactions of different substrates in biological systems.


Assuntos
Acetilcolinesterase/química , Acetiltiocolina/química , Hidrolases de Éster Carboxílico/química , Valeratos/química , Acetatos/química , Acetilcolina/química , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores da Colinesterase/química , Humanos , Hidrólise , Cinética , Tiocolina/química
2.
Arch Toxicol ; 93(5): 1281-1296, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30877329

RESUMO

Phenyl valerate (PV) is a substrate for measuring the PVase activity of neuropathy target esterase (NTE), a key molecular event of organophosphorus-induced delayed neuropathy. A protein with PVase activity in chicken (model for delayed neurotoxicity) was identified as butyrylcholinesterase (BChE). Purified human butyrylcholinesterase (hBChE) showed PVase activity with a similar sensitivity to inhibitors as its cholinesterase (ChE) activity. Further kinetic and theoretical molecular simulation studies were performed. The kinetics did not fit classic competition models among substrates. Partially mixed inhibition was the best-fitting model to acetylthiocholine (AtCh) interacting with PVase activity. ChE activity showed substrate activation, and non-competitive inhibition was the best-fitting model to PV interacting with the non-activated enzyme and partial non-competitive inhibition was the best fitted model for PV interacting with the activated enzyme by excess of AtCh. The kinetic results suggest that other sites could be involved in those activities. From the theoretical docking analysis, we deduced other more favorable sites for binding PV related with Asn289 residue, situated far from the catalytic site ("PV-site"). Both substrates acethylcholine (ACh) and PV presented similar docking values in both the PV-site and catalytic site pockets, which explained some of the observed substrate interactions. Molecular dynamic simulations based on the theoretical structure of crystallized hBChE were performed. Molecular modeling studies suggested that PV has a higher potential for non-competitive inhibition, being also able to inhibit the hydrolysis of ACh through interactions with the PV-site. Further theoretical studies also suggested that PV could yet be able to promote competitive inhibition. We concluded that the kinetic and theoretical studies did not fit the simple classic competition among substrates, but were compatible with the interaction with two different binding sites.


Assuntos
Acetiltiocolina/metabolismo , Butirilcolinesterase/metabolismo , Modelos Moleculares , Valeratos/metabolismo , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular
3.
Toxicology ; 410: 73-82, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176330

RESUMO

Some effects of organophosphorus compounds (OPs) esters cannot be explained by action on currently recognized targets acetylcholinesterase or neuropathy target esterase (NTE). In previous studies, in membrane chicken brain fractions, four components (EPα, EPß, EPγ and EPδ) of phenyl valerate esterase activity (PVase) had been kinetically discriminated combining data of several inhibitors (paraoxon, mipafox, PMSF). EPγ is belonging to NTE. The relationship of PVase components and acetylcholine-hydrolyzing activity (cholinesterase activity) is studied herein. Only EPα PVase activity showed inhibition in the presence of acetylthiocholine, similarly to a non-competitive model. EPα is highly sensitive to mipafox and paraoxon, but is resistant to PMSF, and is spontaneously reactivated when inhibited with paraoxon. In this papers we shows that cholinesterase activities showed inhibition kinetic by PV, which does not fit with a competitive inhibition model when tested for the same experimental conditions used to discriminate the PVase components. Four enzymatic components (CP1, CP2, CP3 and CP4) were discriminated in cholinesterase activity in the membrane fraction according to their sensitivity to irreversible inhibitors mipafox, paraoxon, PMSF and iso-OMPA. Components CP1 and CP2 could be related to EPα as they showed interactions between substrates and similar inhibitory kinetic properties to the tested inhibitors.


Assuntos
Encéfalo/enzimologia , Hidrolases de Éster Carboxílico/efeitos dos fármacos , Galinhas/metabolismo , Inibidores da Colinesterase/farmacologia , Colinesterases/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Animais , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cinética , Membranas/efeitos dos fármacos , Membranas/enzimologia
4.
Toxicology ; 406-407: 123-128, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118792

RESUMO

The molecular targets of best known neurotoxic effects associated to acute exposure to organophosphorus compounds (OPs) are serine esterases located in the nervous system, although there are other less known neurotoxic adverse effects associated with chronic exposure to OPs whose toxicity targets are still not identified. In this work we studied sensitivity to the non-neuropathic OP paraoxon and to the neuropathic OP mipafox of phenyl valerate esterases (PVases) in intact and lysed human neuroblastoma SH-SY5Y cells. The main objective was to discriminate different unknown pools of esterases that might be potential targets of chronic effects from those esterases already known and recognized as targets to these acute neurotoxicity effects. Two components of PVases of different sensitivities were discriminated for paraoxon in both intact and lysed cells; while the two components inhibitable by mipafox were found only for intact cells. A completely resistant component to paraoxon of around 30% was found in both intact and lysed cells; while a component of slightly lower amplitude (around 20%) completely resistant to mipafox was also found for both preparations (intact and lysed cells). The comparison of the results between the intact cells and the lysed cells suggests that the plasma membrane could act as a barrier that reduced the bioavailability of mipafox to PVases. This would imply that the discrimination of the different esterases should be made in lysed cells. However, those studies which aim to determine the physiological role of these esterases should be necessarily conducted in intact cultured cells.


Assuntos
Isoflurofato/análogos & derivados , Neuroblastoma/metabolismo , Compostos Organofosforados/metabolismo , Paraoxon/metabolismo , Valeratos/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hidrólise/efeitos dos fármacos , Isoflurofato/metabolismo , Isoflurofato/toxicidade , Compostos Organofosforados/toxicidade , Paraoxon/toxicidade , Valeratos/toxicidade
5.
Arch Toxicol ; 91(10): 3295-3305, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28299395

RESUMO

Phenyl valerate is used for detecting and measuring neuropathy target esterase (NTE) and has been used for discriminating esterases as potential target in hen model of organophosphorus delayed neuropathy. In previous studies we observed that phenyl valerate esterase (PVase) activity of an enzymatic fraction in chicken brain might be due to a butyrylcholinesterase protein (BuChE), and it was suggested that this enzymatic fraction could be related to the potentiation/promotion phenomenon of the organophosphate-induced delayed neuropathy (OPIDN). In this work, PVase activity of purified human butyrylcholinesterase (hBuChE) is demonstrated and confirms the novel observation that a relationship of BuChE with PVase activities is also relevant for humans, as is, therefore the potential role in toxicity for humans. The KM and catalytic constant (kcat) were estimated as 0.52/0.72 µM and 45,900/49,200 min-1 respectively. Furthermore, this work studies the inhibition by preincubation of PVase and cholinesterase activities of hBuChE with irreversible inhibitors (mipafox, iso-OMPA or PMSF), showing that these inhibitors interact similarly in both activities with similar second-order inhibition constants. Acethylthiocholine and phenyl valerate partly inhibit PVase and cholinesterase activities, respectively. All these observations suggest that both activities occur in the same active center. The interaction with a reversible inhibitor (ethopropazine) showed that the cholinesterase activity was more sensitive than the PVase activity, showing that the sensitivity for this reversible inhibitor is affected by the nature of the substrate. The present work definitively establishes the capacity of BuChE to hydrolyze the carboxylester phenyl valerate using a purified enzyme (hBuChE). Therefore, BuChE should be considered in the research of organophosphorus targets of toxicity related with PVase proteins.


Assuntos
Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Valeratos/metabolismo , Acetilcolina/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Hidrólise , Isoflurofato/análogos & derivados , Isoflurofato/farmacologia , Fenotiazinas/farmacologia , Fluoreto de Fenilmetilsulfonil/farmacologia , Tetraisopropilpirofosfamida/farmacologia
6.
Arch Toxicol ; 91(2): 909-919, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26838044

RESUMO

Multiple epidemiological and experimental studies have demonstrated that exposure to organophosphorus compounds (OPs) is associated with a variety of neurological disorders. Some of these exposure symptoms cannot be precisely correlated with known molecular targets and mechanisms of toxicity. Most of the known molecular targets of OPs fall in the protein family of serine esterases. We have shown that three esterase components in the soluble fraction of chicken brain (an animal model frequently used in OP neurotoxicity assays) can be kinetically distinguished using paraoxon, mipafox and phenylmethyl sulfonyl fluoride as inhibitors, and phenyl valerate as a substrate; we termed them Eα, Eß and Eγ. The Eα-component, which is highly sensitive to paraoxon and mipafox and resistant to PMSF, has shown sensitivity to the substrate acetylthiocholine, and to ethopropazine and iso-OMPA (specific inhibitors of butyrylcholinesterase; BChE) but not to BW 284C51 (a specific inhibitor of acetylcholinesterase; AChE). In this work, we employed a large-scale proteomic analysis B with a LC/MS/MS TripleTOF system; 259 proteins were identified in a chromatographic fractionated sample enriched in Eα activity of the chicken brain soluble fraction. Bioinformatics analysis revealed that BChE is the only candidate protein identified to be responsible for almost all the Eα activity. This study demonstrates the potential information to be gained from combining kinetic dissection with large-scale proteomics and bioinformatics analyses for identification of proteins that are targets of OP toxicity and may be involved in detoxification of phosphoryl and carbonyl esters.


Assuntos
Encéfalo/efeitos dos fármacos , Butirilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Isoflurofato/análogos & derivados , Animais , Encéfalo/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Galinhas , Cromatografia Líquida/métodos , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Isoflurofato/administração & dosagem , Isoflurofato/toxicidade , Fenotiazinas/farmacologia , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
7.
Chem Biol Interact ; 259(Pt B): 374-381, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27507601

RESUMO

Some effects of organophosphorus compounds (OPs) esters cannot be explained through actions on currently recognized targets acetylcholinesterase or neuropathy target esterase (NTE). In soluble chicken brain fraction, three components (Eα, Eß and Eγ) of pheny lvalerate esterase activity (PVase) were kinetically discriminated and their relationship with acetylcholine-hydrolyzing activity (cholinesterase activity) were studied in previous works. In this work, four enzymatic components (CS1, CS2, CS3 and CS4) of cholinesterase activity have been discriminated in soluble fraction, according to their sensitivity to irreversible inhibitors mipafox, paraoxon, PMSF and iso-OMPA and to reversible inhibitors ethopropazine and BW284C51. Cholinesterase component CS1 can be related to the Eα component of PVase activity and identified as butyrylcholinesterase (BuChE). No association and similarities can be stablished among the other PVase component (Eß and Eγ) with the other cholinesterase components (CS2, CS3, CS4). The kinetic analysis has allowed us to stablish a method for discriminating the enzymatic component based on a simple test with two inhibitors. It can be used as biomarker in toxicological studies and for monitoring these cholinesterase components during isolation and molecular identification processes, which will allow OP toxicity to be understood by a multi-target approach.


Assuntos
Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Encéfalo/enzimologia , Inibidores da Colinesterase/farmacologia , Acetiltiocolina/metabolismo , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/metabolismo , Galinhas , Hidrólise/efeitos dos fármacos , Fenotiazinas/farmacologia , Fosforamidas/farmacologia , Solubilidade , Frações Subcelulares/enzimologia , Fatores de Tempo , Compostos de Tosil/farmacologia
8.
Chem Biol Interact ; 259(Pt B): 358-367, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27087132

RESUMO

OPs are a large diverse class of chemicals used for several purposes (pesticides, warfare agents, flame retardants, etc.). They can cause several neurotoxic disorders: acute cholinergic toxicity, organophosphorus-induced delayed neuropathy, long-term neurobehavioral and neuropsychological symptoms, and potentiation of neuropathy. Some of these syndromes cannot be fully understood with known molecular targets. Many enzyme systems have the potential to interact with OPs. Since the discovery of neuropathy target esterase (NTE), the esterases that hydrolyze phenyl valerate (PVases) have been of interest. PVase components are analyzed in chicken tissue, the animal model used for testing OP-delayed neurotoxicity. Three enzymatic components have been discriminated in serum, and three in a soluble fraction of peripheral nerve, three in a soluble fraction of brain, and four in a membrane fraction of brain have been established according to inhibitory kinetic properties combined with several inhibitors. The criteria and strategies to differentiate these enzymatic components are shown. In the brain soluble fraction three enzymatic components, namely Eα, Eß and Eγ, were found. Initial interest focused on Eα activity (highly sensitive to paraoxon and spontaneously reactivated, mipafox and resistant to PMSF). By protein separation methods, a subfraction enriched in Eα activity was obtained and 259 proteins were identified by Tandem Mass Spectrometry. Only one had the criteria for being serine-esterase identified as butyrylcholinesterase, which stresses the relationship between cholinesterases and PVases. The identification and characterization of the whole group of PVases targets of OPs (besides AChE, BuChE and NTE) is necessary to clarify the importance of these other targets in OPs neurotoxicity or on detoxication pathways. A systematic strategy has proven useful for the molecular identification of one enzymatic component, which can be applied to identify them all.


Assuntos
Esterases/metabolismo , Compostos Organofosforados/toxicidade , Valeratos/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Humanos , Hidrólise , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA