RESUMO
Indole-3-carbinol (I3C), a hydrolysis product of indole-3-methylglucosinolate, is toxic to herbivorous insects and pathogens. In mammals, I3C is extensively studied for its properties in cancer prevention and treatment. Produced in Brassicaceae, I3C reversibly inhibits root elongation in a concentration-dependent manner. This inhibition is partially explained by the antagonistic action of I3C on auxin signaling through TIR1. To further elucidate the mode of action of I3C in plants, we have employed a forward-genetic amiRNA screen that circumvents functional redundancy. We identified and characterized two amiRNA lines with impaired I3C response. The first line, ICT2, targets the phosphatidylinositol 4-phosphate 5-kinase family (PIP5K), exhibiting tolerance to I3C, while the second line, ICS1, targets the Wall-Associated Kinases (WAK1-3) family, showing susceptibility to I3C. Both lines maintain I3C-induced antagonism of auxin signaling, indicating that their phenotypes are due to auxin-independent mechanisms. Transcript profiling experiments reveal that both lines are transcriptionally primed to respond to I3C treatment. Physiological, metabolomic, and transcriptomic analysis reveal that these kinases mediate numerous developmental processes and are involved in abiotic and biotic stress responses.
Assuntos
Arabidopsis , Indóis , Fosfotransferases (Aceptor do Grupo Álcool) , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estresse Fisiológico/efeitos dos fármacos , Indóis/farmacologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacosRESUMO
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Assuntos
HIV-1 , Vírus Linfotrópico T Tipo 1 Humano , Montagem de Vírus , HIV-1/fisiologia , HIV-1/genética , HIV-1/metabolismo , Humanos , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Produtos do Gene gag/metabolismo , Produtos do Gene gag/genética , Membrana Celular/metabolismo , Membrana Celular/virologia , Replicação ViralRESUMO
Duck hepatitis A virus 1 (DHAV-1) is one of the most serious pathogens endangering the duck industry. Phosphatidylinositol 4-kinases (PI4Ks) are important for viral replication, and different viruses have different strategies to hijack PI4Ks. To date, few studies have investigated the DHAV-1 life cycle; thus, whether PI4Ks are required for DHAV-1 replication has not been reported. In this study, we found that the PI4KB protein, a PI4K, promoted the replication and translation of DHAV-1, and the 2A2, 2C, 2BC, 3A, 3AB, 3D, and 3CD proteins of DHAV-1 were able to interact with the PI4KB protein. Amino acids 101-120 of the 2A2 protein is the region where the 2A2 protein interacts with the PI4KB protein.
RESUMO
Small-conductance Ca2+-activated K+ channels (SK, KCa2) are gated solely by intracellular microdomain Ca2+. The channel has emerged as a therapeutic target for cardiac arrhythmias. Calmodulin (CaM) interacts with the CaM binding domain (CaMBD) of the SK channels, serving as the obligatory Ca2+ sensor to gate the channels. In heterologous expression systems, phosphatidylinositol 4,5-bisphosphate (PIP2) coordinates with CaM in regulating SK channels. However, the roles and mechanisms of PIP2 in regulating SK channels in cardiomyocytes remain unknown. Here, optogenetics, magnetic nanoparticles, combined with Rosetta structural modeling, and molecular dynamics (MD) simulations revealed the atomistic mechanisms of how PIP2 works in concert with Ca2+-CaM in the SK channel activation. Our computational study affords evidence for the critical role of the amino acid residue R395 in the S6 transmembrane segment, which is localized in propinquity to the intracellular hydrophobic gate. This residue forms a salt bridge with residue E398 in the S6 transmembrane segment from the adjacent subunit. Both R395 and E398 are conserved in all known isoforms of SK channels. Our findings suggest that the binding of PIP2 to R395 residue disrupts the R395:E398 salt bridge, increasing the flexibility of the transmembrane segment S6 and the activation of the channel. Importantly, our findings serve as a platform for testing of structural-based drug designs for therapeutic inhibitors and activators of the SK channel family. The study is timely since inhibitors of SK channels are currently in clinical trials to treat atrial arrhythmias.
Assuntos
Calmodulina , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Animais , Calmodulina/metabolismo , Calmodulina/química , Humanos , Ativação do Canal Iônico , Cálcio/metabolismo , Ligação Proteica , Miócitos Cardíacos/metabolismoRESUMO
Cytokinesis is the final stage of the cell cycle that results in the physical separation of daughter cells. To accomplish cytokinesis, many organisms build an actin- and myosin-based cytokinetic ring (CR) that is anchored to the plasma membrane (PM). Defects in CR-PM anchoring can arise when the PM lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is depleted. In Schizosaccharomyces pombe, reduced PM PI(4,5)P2 results in a CR that cannot maintain a medial position and slides toward one cell end, resulting in two differently sized daughter cells. S. pombe PM PI(4,5)P2 is synthesized by the phosphatidylinositol 4-phosphate 5-kinase (PI5-kinase) Its3, but what regulates this enzyme to maintain appropriate PM PI(4,5)P2 levels in S. pombe is not known. To identify Its3 regulators, we used proximity-based biotinylation, and the uncharacterized protein Duc1 was specifically detected. We discovered that Duc1 decorates the PM except at the cell division site and that its unique localization pattern is dictated by binding to the endoplasmic reticulum (ER)-PM contact site proteins Scs2 and Scs22. Our evidence suggests that Duc1 also binds PI(4,5)P2 and helps enrich Its3 at the lateral PM, thereby promoting PM PI(4,5)P2 synthesis and robust CR-PM anchoring.
Assuntos
Membrana Celular , Citocinese , Retículo Endoplasmático , Fosfatidilinositol 4,5-Difosfato , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Retículo Endoplasmático/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genéticaRESUMO
Phosphoinositides, such as PI(4,5)P2, are known to function as structural components of membranes, signalling molecules, markers of membrane identity, mediators of protein recruitment and regulators of neurotransmission and synaptic development. Phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P, which are precursors for PI(4,5)P2, but may also have independent functions. The roles of PI4Ks in neurotransmission and synaptic development have not been studied in detail. Previous studies on PI4KII and PI4KIIIß at the Drosophila larval neuromuscular junction have suggested that PI4KII and PI4KIIIß enzymes may serve redundant roles, where single PI4K mutants yielded mild or no synaptic phenotypes. However, the precise synaptic functions (neurotransmission and synaptic growth) of these PI4Ks have not been thoroughly studied. Here, we used PI4KII and PI4KIIIß null mutants and presynaptic-specific knockdowns of these PI4Ks to investigate their roles in neurotransmission and synaptic growth. We found that PI4KII and PI4KIIIß appear to have non-overlapping functions. Specifically, glial PI4KII functions to restrain synaptic growth, whereas presynaptic PI4KIIIß promotes synaptic growth. Furthermore, loss of PI4KIIIß or presynaptic PI4KII impairs neurotransmission. The data presented in this study uncover new roles for PI4K enzymes in neurotransmission and synaptic growth.
Assuntos
1-Fosfatidilinositol 4-Quinase , Junção Neuromuscular , Transmissão Sináptica , Animais , Transmissão Sináptica/fisiologia , Junção Neuromuscular/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Sinapses/metabolismo , Sinapses/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Larva/crescimento & desenvolvimentoRESUMO
GABARAP is a member of the ATG8 family of ubiquitin-like autophagy related proteins. It was initially discovered as a facilitator of GABA-A receptor translocation to the plasma membrane and has since been shown to promote the intracellular transport of a variety of other proteins under non-autophagic conditions. We and others have shown that GABARAP interacts with the Type II phosphatidylinositol 4-kinase, PI4K2A, and that this interaction is important for autophagosome-lysosome fusion. Here, we identify a 7-amino acid segment within the PI4K2A catalytic domain that contains the GABARAP interaction motif (GIM). This segment resides in an exposed loop that is not conserved in the other mammalian Type II PI 4-kinase, PI4K2B, explaining the specificity of GABARAP binding to the PI4K2A isoform. Mutation of the PI4K2A GIM inhibits GABARAP binding and PI4K2A-mediated recruitment of cytosolic GABARAP to subcellular organelles. We further show that GABARAP binds to mono-phosphorylated phosphoinositides, PI3P, PI4P, and PI5P, raising the possibility that these lipids contribute to the binding energies that drive GABARAP-protein interactions on membranes.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Proteínas Associadas aos Microtúbulos , Ligação Proteica , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Células HEK293 , Animais , Domínio Catalítico , Autofagia , Fosforilação , Fosfatidilinositóis/metabolismo , Antígenos de Histocompatibilidade Menor , Fosfotransferases (Aceptor do Grupo Álcool)RESUMO
With the escalating prevalence of global heat waves, heat stroke has become a prominent health concern, leading to substantial liver damage. Unlike other forms of liver injury, heat stroke-induced damage is characterized by heat cytotoxicity and heightened inflammation, directly contributing to elevated mortality rates. While clinical assessments have identified elevated bilirubin levels as indicative of Kupffer cell dysfunction, their specific correlation with heat stroke liver injury remains unclear. Our hypothesis proposes the involvement of Kupffer cell ferroptosis during heat stroke, initiating IL-1ß-mediated inflammation. Using single-cell RNA sequencing of murine macrophages, a distinct and highly susceptible Kupffer cell subtype, Clec4F+/CD206+, emerged, with heme oxygenase 1 (HMOX-1) playing a pivotal role. Mechanistically, heat-induced HMOX-1, regulated by early growth response factor 1, mediated ferroptosis in Kupffer cells, specifically in the Clec4F+/CD206+ subtype (KC2), activating phosphatidylinositol 4-kinase beta and promoting PI4P production. This cascade triggered NLRP3 inflammasome activation and maturation of IL-1ß. These findings underscore the critical role of targeted therapy against HMOX-1 in ferroptosis within Kupffer cells, particularly in Clec4F+/CD206+ KCs. Such an approach has the potential to mitigate inflammation and alleviate acute liver injury in the context of heat stroke, offering a promising avenue for future therapeutic interventions.
RESUMO
Phosphorylated residues of G protein-coupled receptors bind to the N-domain of arrestin, resulting in the release of its C-terminus. This induces further allosteric conformational changes, such as polar core disruption, alteration of interdomain loops, and domain rotation, which transform arrestins into the receptor-activated state. It is widely accepted that arrestin activation occurs by conformational changes propagated from the N- to the C-domain. However, recent studies have revealed that binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the C-domain transforms arrestins into a pre-active state. Here, we aimed to elucidate the mechanisms underlying PIP2-induced arrestin pre-activation. We compare the conformational changes of ß-arrestin-2 upon binding of PIP2 or phosphorylated C-tail peptide of vasopressin receptor type 2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). Introducing point mutations on the potential routes of the allosteric conformational changes and analyzing these mutant constructs with HDX-MS reveals that PIP2-binding at the C-domain affects the back loop, which destabilizes the gate loop and ßXX to transform ß-arrestin-2 into the pre-active state.
Assuntos
Fosfatidilinositol 4,5-Difosfato , Ligação Proteica , beta-Arrestina 2 , Fosfatidilinositol 4,5-Difosfato/metabolismo , beta-Arrestina 2/metabolismo , beta-Arrestina 2/genética , Humanos , Fosforilação , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/química , Conformação Proteica , Modelos Moleculares , Espectrometria de Massa com Troca Hidrogênio-Deutério , Domínios Proteicos , AnimaisRESUMO
UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.
Assuntos
1-Fosfatidilinositol 4-Quinase , Antimaláricos , Modelos Animais de Doenças , Malária Falciparum , Plasmodium falciparum , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Humanos , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Relação Dose-Resposta a Droga , Feminino , Testes de Sensibilidade ParasitáriaRESUMO
In macroautophagy, lysosomes fuse with closed autophagosomes but not with unclosed ones. This is achieved, at least in part, by the temporally regulated recruitment of the autophagosomal SNARE STX17 (syntaxin 17) to only mature autophagosomes. However, the molecular mechanism by which STX17 recognizes autophagosomal maturation remains unknown. Our recent study revealed that STX17 recruitment is regulated by the electrostatic interaction between the positively charged C-terminal region of STX17 and the autophagosomal membrane, which becomes negatively charged during maturation due to the accumulation of phosphatidylinositol-4-phosphate (PtdIns4P). Here, we propose an electrostatic maturation model of the autophagosome.
Assuntos
Autofagossomos , Autofagia , Eletricidade Estática , Autofagossomos/metabolismo , Humanos , Autofagia/fisiologia , Animais , Fosfatos de Fosfatidilinositol/metabolismo , Modelos Biológicos , Proteínas Qa-SNARE/metabolismo , Lisossomos/metabolismoRESUMO
Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three ß-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3ß1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.
Assuntos
Polissacarídeos , Sialiltransferases , Humanos , Sialiltransferases/metabolismo , Polissacarídeos/metabolismo , Animais , Glicosilação , Neoplasias/metabolismoRESUMO
A change in the electric charge of autophagosome membranes controls the recruitment of SNARE proteins to ensure that membrane fusion occurs at the right time during autophagy.
Assuntos
Autofagossomos , Autofagia , Fusão de Membrana , Proteínas SNARE , Autofagia/fisiologia , Autofagossomos/metabolismo , Proteínas SNARE/metabolismo , Humanos , AnimaisRESUMO
Transient receptor potential melastatin-8 (TRPM8) is a cation channel that is activated by cold and "cooling agents" such as menthol and icilin, which induce a cold sensation. The stimulation of TRPM8 activates an intracellular signaling cascade that ultimately leads to a change in the gene expression pattern of the cells. Here, we investigate the TRPM8-induced signaling pathway that links TRPM8 channel activation to gene transcription. Using a pharmacological approach, we show that the inhibition of phosphatidylinositol 4-phosphate 5 kinase α (PIP5K), an enzyme essential for the biosynthesis of phosphatidylinositol 4,5-bisphosphate, attenuates TRPM8-induced gene transcription. Analyzing the link between TRPM8 and Gq proteins, we show that the pharmacological inhibition of the ßγ subunits impairs TRPM8 signaling. In addition, genetic studies show that TRPM8 requires an activated Gα subunit for signaling. In the nucleus, the TRPM8-induced signaling cascade triggers the activation of the transcription factor AP-1, a complex consisting of a dimer of basic region leucine zipper (bZIP) transcription factors. Here, we identify the bZIP protein c-Jun as an essential component of AP-1 within the TRPM8-induced signaling cascade. In summary, with PIP5K, Gq subunits, and c-Jun, we identified key molecules in TRPM8-induced signaling from the plasma membrane to the nucleus.
Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Fosfotransferases (Aceptor do Grupo Álcool) , Transdução de Sinais , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Transcrição AP-1/metabolismo , Células HEK293 , Proteínas Proto-Oncogênicas c-jun/metabolismo , AnimaisRESUMO
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Assuntos
Autofagossomos , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Autofagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Humanos , Simulação de Dinâmica Molecular , Autofagia/fisiologiaRESUMO
The Ser/Thr kinase protein kinase-D1 (PKD1) is involved in induction of various cell physiological processes in the heart such as myocellular hypertrophy and inflammation, which may turn maladaptive during long-term stimulation. Of special interest is a key role of PKD1 in the regulation of cardiac substrate metabolism. Glucose and fatty acids are the most important substrates for cardiac energy provision, and the ratio at which they are utilized determines the health status of the heart. Cardiac glucose uptake is mainly regulated by translocation of the glucose transporter GLUT4 from intracellular stores (endosomes) to the sarcolemma, and fatty acid uptake via a parallel translocation of fatty acid transporter CD36 from endosomes to the sarcolemma. PKD1 is involved in the regulation of GLUT4 translocation, but not CD36 translocation, giving it the ability to modulate glucose uptake without affecting fatty acid uptake, thereby altering the cardiac substrate balance. PKD1 would therefore serve as an attractive target to combat cardiac metabolic diseases with a tilted substrate balance, such as diabetic cardiomyopathy. However, PKD1 activation also elicits cardiac hypertrophy and inflammation. Therefore, identification of the events upstream and downstream of PKD1 may provide superior therapeutic targets to alter the cardiac substrate balance. Recent studies have identified the lipid kinase phosphatidylinositol 4-kinase IIIß (PI4KIIIß) as signaling hub downstream of PKD1 to selectively stimulate GLUT4-mediated myocardial glucose uptake without inducing hypertrophy. Taken together, the PKD1 signaling pathway serves a pivotal role in cardiac glucose metabolism and is a promising target to selectively modulate glucose uptake in cardiac disease.
Assuntos
Transportador de Glucose Tipo 4 , Glucose , Miocárdio , Proteína Quinase C , Transporte Proteico , Transdução de Sinais , Transportador de Glucose Tipo 4/metabolismo , Humanos , Miocárdio/metabolismo , Animais , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Glucose/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Ácidos Graxos/metabolismoRESUMO
Phosphatidylinositol 4 phosphate 5-kinase (PIP5K) is crucial for the phosphatidylinositol (PI) signaling pathway. It plays a significant role in plant growth and development, as well as stress response. However, its effects on cotton are unknown. This study identified PIP5K genes from four cotton species and conducted bioinformatic analyses, with a particular emphasis on the functions of GhPIP5K9a in primary roots. The results showed that cotton PIP5Ks were classified into four subgroups. Analysis of gene structure and motif composition showed obvious conservation within each subgroup. Synteny analysis suggested that the PIP5K gene family experienced significant expansion due to both whole-genome duplication (WGD) and segmental duplication. Transcriptomic data analysis revealed that the majority of GhPIP5K genes had the either low or undetectable levels of expression. Moreover, GhPIP5K9a is highly expressed in the root and was located in plasmalemma. Suppression of GhPIP5K9a transcripts resulted in longer primary roots, longer primary root cells and increased auxin polar transport-related genes expression, and decreased abscisic acid (ABA) content, indicating that GhPIP5K9a negatively regulates cotton primary root growth. This study lays the foundation for further exploration of the role of the PIP5K genes in cotton.
Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas de Plantas , Raízes de Plantas , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Família MultigênicaRESUMO
Lipids are key factors in regulating membrane fusion. Lipids are not only structural components to form membranes but also active catalysts for vesicle fusion and neurotransmitter release, which are driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. SNARE proteins seem to be partially assembled before fusion, but the mechanisms that arrest vesicle fusion before Ca2+ influx are still not clear. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) electrostatically triggers vesicle fusion as an electrostatic catalyst by lowering the hydration energy and that a myristoylated alanine-rich C-kinase substrate (MARCKS), a PIP2-binding protein, arrests vesicle fusion in a vesicle docking state where the SNARE complex is partially assembled. Vesicle-mimicking liposomes fail to reproduce vesicle fusion arrest by masking PIP2, indicating that native vesicles are essential for the reconstitution of physiological vesicle fusion. PIP2 attracts cations to repel water molecules from membranes, thus lowering the hydration energy barrier.
Assuntos
Fusão de Membrana , Fosfatidilinositol 4,5-Difosfato , Eletricidade Estática , Água , Catálise , Lipossomos/química , Fusão de Membrana/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacologia , Proteínas SNARE/metabolismo , Proteínas SNARE/química , Água/químicaRESUMO
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infects up to a quarter of the world's population. Although immune responses can control Mtb infection, 5%-10% of infected individuals can progress to active TB disease (progressors). A myriad of host factors regulate disease progression in TB and a better understanding of immune correlates of protection and disease is pivotal for the development of new therapeutics. Comparison of human whole blood transcriptomic metadata with that of macaque TB progressors and Mtb-infected diversity outbred mice (DO) led to the identification of differentially regulated gene (DEG) signatures, associated with TB progression or control. The current study assessed the function of Phospholipase C epsilon (PLCÆ1), the top downregulated gene across species in TB progressors, using a gene-specific knockout mouse model of Mtb infection and in vitro Mtb-infected bone marrow-derived macrophages. PLCÆ1 gene expression was downregulated in TB progressors across species. PLCε1 deficiency in the mouse model resulted in increased susceptibility to Mtb infection, coincident accumulation of lung myeloid cells, and reduced ability to mount antibacterial responses. However, PLCε1 was not required for the activation and accumulation of T cells in mice. Our results suggest an important early role for PLCÆ1 in shaping innate immune response to TB and may represent a putative target for host-directed therapy.
Assuntos
Mycobacterium tuberculosis , Fosfoinositídeo Fosfolipase C , Tuberculose , Humanos , Camundongos , Animais , Ativação de Macrófagos , Imunidade InataRESUMO
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is implicated in various processes, including hormone-induced signal transduction, endocytosis, and exocytosis in the plasma membrane. However, how H2O2 accumulation regulates the levels of PtdIns(4,5)P2 in the plasma membrane in cells stimulated with epidermal growth factors (EGFs) is not known. We show that a plasma membrane PtdIns(4,5)P2-degrading enzyme, synaptojanin (Synj) phosphatase, is inactivated through oxidation by H2O2. Intriguingly, H2O2 inhibits the 4-phosphatase activity of Synj but not the 5-phosphatase activity. In EGF-activated cells, the oxidation of Synj dual phosphatase is required for the transient increase in the plasma membrane levels of phosphatidylinositol 4-phosphate [PtdIns(4)P], which can control EGF receptor-mediated endocytosis. These results indicate that intracellular H2O2 molecules act as signaling mediators to fine-tune endocytosis by controlling the stability of plasma membrane PtdIns(4)P, an intermediate product of Synj phosphoinositide dual phosphatase.