Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928196

RESUMO

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , beta-Arrestinas/metabolismo , Sítios de Ligação , Sinalização do Cálcio , Células HEK293 , Lisofosfolipídeos/metabolismo , Fosforilação , Receptores de Ácidos Lisofosfatídicos/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791546

RESUMO

Lysophosphatidic acid (LPA) type 3 (LPA3) receptor mutants were generated in which the sites detected phosphorylated were substituted by non-phosphorylatable amino acids. Substitutions were made in the intracellular loop 3 (IL3 mutant), the carboxyl terminus (Ctail), and both domains (IL3/Ctail). The wild-type (WT) receptor and the mutants were expressed in T-REx HEK293 cells, and the consequences of the substitutions were analyzed employing different functional parameters. Agonist- and LPA-mediated receptor phosphorylation was diminished in the IL3 and Ctail mutants and essentially abolished in the IL3/Ctail mutant, confirming that the main phosphorylation sites are present in both domains and their role in receptor phosphorylation eliminated by substitution and distributed in both domains. The WT and mutant receptors increased intracellular calcium and ERK 1/2 phosphorylation in response to LPA and PMA. The agonist, Ki16425, diminished baseline intracellular calcium, which suggests some receptor endogenous activity. Similarly, baseline ERK1/2 phosphorylation was diminished by Ki16425. An increase in baseline ERK phosphorylation was detected in the IL3/Ctail mutant. LPA and PMA-induced receptor interaction with ß-arrestin 2 and LPA3 internalization were severely diminished in cells expressing the mutants. Mutant-expressing cells also exhibit increased baseline proliferation and response to different stimuli, which were inhibited by the antagonist Ki16425, suggesting a role of LPA receptors in this process. Migration in response to different attractants was markedly increased in the Ctail mutant, which the Ki16425 antagonist also attenuated. Our data experimentally show that receptor phosphorylation in the distinct domains is relevant for LPA3 receptor function.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , Fosforilação , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Células HEK293 , Lisofosfolipídeos/metabolismo , Cálcio/metabolismo , Endocitose , Mutação
3.
Methods ; 229: 1-8, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38768932

RESUMO

SARS-CoV-2's global spread has instigated a critical health and economic emergency, impacting countless individuals. Understanding the virus's phosphorylation sites is vital to unravel the molecular intricacies of the infection and subsequent changes in host cellular processes. Several computational methods have been proposed to identify phosphorylation sites, typically focusing on specific residue (S/T) or Y phosphorylation sites. Unfortunately, current predictive tools perform best on these specific residues and may not extend their efficacy to other residues, emphasizing the urgent need for enhanced methodologies. In this study, we developed a novel predictor that integrated all the residues (STY) phosphorylation sites information. We extracted ten different feature descriptors, primarily derived from composition, evolutionary, and position-specific information, and assessed their discriminative power through five classifiers. Our results indicated that Light Gradient Boosting (LGB) showed superior performance, and five descriptors displayed excellent discriminative capabilities. Subsequently, we identified the top two integrated features have high discriminative capability and trained with LGB to develop the final prediction model, LGB-IPs. The proposed approach shows an excellent performance on 10-fold cross-validation with an ACC, MCC, and AUC values of 0.831, 0.662, 0.907, respectively. Notably, these performances are replicated in the independent evaluation. Consequently, our approach may provide valuable insights into the phosphorylation mechanisms in SARS-CoV-2 infection for biomedical researchers.


Assuntos
COVID-19 , Biologia Computacional , SARS-CoV-2 , Fosforilação , SARS-CoV-2/metabolismo , Humanos , COVID-19/virologia , COVID-19/metabolismo , Biologia Computacional/métodos
4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069285

RESUMO

The function of the α1B-adrenergic receptor phosphorylation sites previously detected by mass spectrometry was evaluated by employing mutants, substituting them with non-phosphorylatable amino acids. Substitution of the intracellular loop 3 (IL3) sites did not alter baseline or stimulated receptor phosphorylation, whereas substitution of phosphorylation sites in the carboxyl terminus (Ctail) or both domains (IL3/Ctail) markedly decreased receptor phosphorylation. Cells expressing the IL3 or Ctail receptor mutants exhibited a noradrenaline-induced calcium-maximal response similar to those expressing the wild-type receptor, and a shift to the left in the concentration-response curve to noradrenaline was also noticed. Cells expressing the IL3/Ctail mutant exhibited higher apparent potency and increased maximal response to noradrenaline than those expressing the wild-type receptor. Phorbol ester-induced desensitization of the calcium response to noradrenaline was reduced in cells expressing the IL3 mutant and abolished in cells in which the Ctail or the IL3/Ctail were modified. In contrast, desensitization in response to preincubation with noradrenaline was unaffected in cells expressing the distinct receptor mutants. Noradrenaline-induced ERK phosphorylation was surprisingly increased in cells expressing IL3-modified receptors but not in those expressing receptors with the Ctail or IL3/Ctail substitutions. Our data indicate that phosphorylation sites in the IL3 and Ctail domains mediate and regulate α1B-adrenergic receptor function. Phorbol ester-induced desensitization seems to be closely associated with receptor phosphorylation, whereas noradrenaline-induced desensitization likely involves other elements.


Assuntos
Cálcio , Norepinefrina , Fosforilação , Cálcio/metabolismo , Norepinefrina/farmacologia , Ésteres de Forbol , Receptores Adrenérgicos/metabolismo
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38058187

RESUMO

The worldwide appearance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated significant concern and posed a considerable challenge to global health. Phosphorylation is a common post-translational modification that affects many vital cellular functions and is closely associated with SARS-CoV-2 infection. Precise identification of phosphorylation sites could provide more in-depth insight into the processes underlying SARS-CoV-2 infection and help alleviate the continuing COVID-19 crisis. Currently, available computational tools for predicting these sites lack accuracy and effectiveness. In this study, we designed an innovative meta-learning model, Meta-Learning for Serine/Threonine Phosphorylation (MeL-STPhos), to precisely identify protein phosphorylation sites. We initially performed a comprehensive assessment of 29 unique sequence-derived features, establishing prediction models for each using 14 renowned machine learning methods, ranging from traditional classifiers to advanced deep learning algorithms. We then selected the most effective model for each feature by integrating the predicted values. Rigorous feature selection strategies were employed to identify the optimal base models and classifier(s) for each cell-specific dataset. To the best of our knowledge, this is the first study to report two cell-specific models and a generic model for phosphorylation site prediction by utilizing an extensive range of sequence-derived features and machine learning algorithms. Extensive cross-validation and independent testing revealed that MeL-STPhos surpasses existing state-of-the-art tools for phosphorylation site prediction. We also developed a publicly accessible platform at https://balalab-skku.org/MeL-STPhos. We believe that MeL-STPhos will serve as a valuable tool for accelerating the discovery of serine/threonine phosphorylation sites and elucidating their role in post-translational regulation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fosforilação , SARS-CoV-2/metabolismo , Serina/metabolismo , Treonina/metabolismo
6.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259366

RESUMO

BACKGROUND: H2S (hydrogen sulfide) protects cerebral vasodilatation and endothelial cells against oxygen-glucose deprivation/reoxygenation injury via the inhibition of the RhoA-ROCK pathway and ROCK2 expression. However, the inhibitory mechanism of H2S on ROCK2 expression is still unclear. The study aimed to investigate the target and mechanism of H2S in inhibition of ROCK2. METHODS: His-ROCK2wild protein was constructed, expressed, and was used for phosphorylation assay in vitro. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the potential phosphorylation sites of ROCK2. Recombinant ROCK2wild-pEGFP-N1, ROCK2T436A-pEGFP-N1, and ROCK2S575F-pEGFP-N1 plasmids were constructed and transfected into rat hippocampal neurons (RHNs). ROCK2 expression, cell viability, the release of lactate dehydrogenase (LDH), nerve-specific enolase (NSE), and Ca2+ were detected to evaluate the neuroprotective mechanism of H2S. RESULTS: Phosphorylation at Thr436 and Ser575 of ROCK2 was observed by mass spectrometry when Polo-like kinase 1 (PLK1) and protein kinase A (PKA) were added in vitro, and NaHS significantly inhibited phosphorylation at Thr436 and Ser575. Additionally, NaHS significantly inhibited the expression of ROCK2 and recombinant proteins GFP-ROCK2, GFP-ROCK2T436A, and GFP-ROCK2S575F in transfected RHNs. Compared with empty plasmid, GFP-ROCK2T436A, and GFP-ROCK2S575F groups, NaHS significantly inhibited the release of LDH, NSE, and Ca2+ and promoted ROCK2 activity in the GFP-ROCK2wild group. Thr436 and Ser575 may be dominant sites that mediate NaHS inhibition of ROCK2 protein activity in RHNs. Compared with the empty plasmid, GFP-ROCK2T436A, and the GFP-ROCK2S575F group, NaHS had more significant inhibitory effects on hypoxia/reoxygenation (H/R) injury-induced cell viability reduction and increased LDH and NSE release in the GFP-ROCK2wild group. CONCLUSION: Exogenous H2S protected the RHNs against H/R injury via Thr436 and Ser575 of ROCK2. These findings suggested that Thr436 and Ser575 may be the dominant sites that mediated the effect of NaHS on protecting RHNs against H/R injury.

7.
Comput Biol Med ; 160: 106935, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120990

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world affects the normal lives of people all over the world. The computational methods can be used to accurately identify SARS-CoV-2 phosphorylation sites. In this paper, a new prediction model of SARS-CoV-2 phosphorylation sites, called DE-MHAIPs, is proposed. First, we use six feature extraction methods to extract protein sequence information from different perspectives. For the first time, we use a differential evolution (DE) algorithm to learn individual feature weights and fuse multi-information in a weighted combination. Next, Group LASSO is used to select a subset of good features. Then, the important protein information is given higher weight through multi-head attention. After that, the processed data is fed into long short-term memory network (LSTM) to further enhance model's ability to learn features. Finally, the data from LSTM are input into fully connected neural network (FCN) to predict SARS-CoV-2 phosphorylation sites. The AUC values of the S/T and Y datasets under 5-fold cross-validation reach 91.98% and 98.32%, respectively. The AUC values of the two datasets on the independent test set reach 91.72% and 97.78%, respectively. The experimental results show that the DE-MHAIPs method exhibits excellent predictive ability compared with other methods.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Fosforilação , Aprendizagem , Algoritmos
8.
Microb Cell Fact ; 22(1): 48, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36899374

RESUMO

Improving the resistance of Saccharomyces cerevisiae to vanillin, derived from lignin, will benefit the design of robust cell factories for lignocellulosic biorefining. The transcription factor Yrr1p mediates S. cerevisiae resistance to various compounds. In this study, eleven predicted phosphorylation sites were mutated, among which 4 mutants of Yrr1p, Y134A/E and T185A/E could improve vanillin resistance. Both dephosphorylated and phosphorylated mutations at Yrr1p 134 and 185 gathered in the nucleus regardless of the presence or absence of vanillin. However, the phosphorylated mutant Yrr1p inhibited target gene expression, while dephosphorylated mutants promoted expression. Transcriptomic analysis showed that the dephosphorylated Yrr1p T185 mutant, under vanillin stress, upregulated ribosome biogenesis and rRNA processing. These results demonstrate the mechanism by which Yrr1p phosphorylation regulates the expression of target genes. The identification of key phosphorylation sites in Yrr1p offers novel targets for the rational construction of Yrr1p mutants to improve resistance to other compounds.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Benzaldeídos/metabolismo
9.
Microbiol Spectr ; : e0301122, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975803

RESUMO

Responses to acetic acid toxicity in the budding yeast Saccharomyces cerevisiae have widespread implications in the biorefinery of lignocellulosic biomass and food preservation. Our previous studies revealed that Set5, the yeast lysine methyltransferase and histone H4 methyltransferase, was involved in acetic acid stress tolerance. However, it is still mysterious how Set5 functions and interacts with the known stress signaling network. Here, we revealed that elevated phosphorylation of Set5 during acetic acid stress is accompanied by enhanced expression of the mitogen-activated protein kinase (MAPK) Hog1. Further experiments uncovered that the phosphomimetic mutation of Set5 endowed yeast cells with improved growth and fermentation performance and altered transcription of specific stress-responsive genes. Intriguingly, Set5 was found to bind the coding region of HOG1 and regulate its transcription, along with increased expression and phosphorylation of Hog1. A protein-protein interaction between Set5 and Hog1 was also revealed. In addition, modification of Set5 phosphosites was shown to regulate reactive oxygen species (ROS) accumulation, which is known to affect yeast acetic acid stress tolerance. The findings in this study imply that Set5 may function together with the central kinase Hog1 to coordinate cell growth and metabolism in response to stress. IMPORTANCE Hog1 is the yeast homolog of p38 MAPK in mammals that is conserved across eukaryotes, and it plays crucial roles in stress tolerance, fungal pathogenesis, and disease treatments. Here, we provide evidence that modification of Set5 phosphorylation sites regulates the expression and phosphorylation of Hog1, which expands current knowledge on upstream regulation of the Hog1 stress signaling network. Set5 and its homologous proteins are present in humans and various eukaryotes. The newly identified effects of Set5 phosphorylation site modifications in this study benefit an in-depth understanding of eukaryotic stress signaling, as well as the treatment of human diseases.

10.
Proteins ; 91(6): 831-846, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36645312

RESUMO

The AMP-activated protein kinase (AMPK) is known to be activated by the protein tyrosine phosphatase non-receptor type 12 (PTP-PEST) under hypoxic conditions. This activation is mediated by tyrosine dephosphorylation of the AMPKα subunit. However, the identity of the phosphotyrosine residues that PTP-PEST dephosphorylates remains unknown. In this study, we first predicted the structure of the complex of the AMPKα2 subunit and PTP-PEST catalytic domain using bioinformatics tools and further confirmed the stability of the complex using molecular dynamics simulations. Evaluation of the protein-protein interfaces indicated that residue Tyr232 is the most likely dephosphorylation site on AMPKα2. In addition, we explored the effect of phosphorylation of PTP-PEST residue Tyr64 on the stability of the complex. Phosphorylation of the highly conserved Tyr64, an interface residue, enhances the stability of the complex via the rearrangement of a network of electrostatic interactions in conjunction with conformational changes in the catalytic WPD loop. We generated a phosphomimetic (PTP-PEST-Y64D) mutant and used co-immunoprecipitation to study the effect of PTP-PEST phosphorylation on AMPKα2 binding. The mutant exhibited an increased affinity for AMPKα2 and corroborated the in-silico predictions. Together, our findings present a plausible structural basis of AMPK regulation by PTP-PEST and show how phosphorylation of PTP-PEST affects its interaction with AMPKα2.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Tirosina Fosfatases/química , Fosforilação , Domínio Catalítico
11.
J Agric Food Chem ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719709

RESUMO

Phosphorylation is a broad post-translational protein modification, and the level of phosphorylation of milk proteins is associated with lactation, coagulation properties, and digestibility. However, phosphoproteins in bovine milk-based and goat milk-based infant formula have not been systematically explored. Here, we have analyzed six bovine and six goat milk-based infant formula using a quantitative phosphoproteomics approach, from which we identified 200 phosphoproteins with 276 phosphorylation sites and 156 phosphorylation sites from 75 phosphoproteins, respectively. Of these, 99 phosphorylation sites from 26 shared phosphoproteins were differentially expressed between bovine and goat milk-based infant formula. Especially, CSN1S1 was the most phosphoprotein with 25 quantified phosphorylation sites. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the identified phosphoproteins not only provide nutrition to the infant but also have anti-inflammatory, antipathogenic, and other biological functions. Our results shed light on the composition, phosphorylation sites, and biological functions of phosphoproteins in bovine milk and goat milk-based infant formula, which provide new insights into the key role of protein modifications during infant development. It also helps us to better understand the differences in digestibility of infant formula from different animal milk sources and thus guides the choice of milk source for infant formula.

12.
J Dairy Sci ; 105(11): 9240-9252, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175223

RESUMO

The small intestine is the primary site of nutrient digestion and absorption, which plays a key role in the survival of neonatal calves. A comprehensive assessment of the phosphoproteomic changes in the small intestine of neonatal calves is unavailable; therefore, we used phosphopeptide enrichment coupled with liquid chromatography-tandem mass spectrometry to investigate the changes in the phosphoproteome profile in the bovine small intestine during the first 36 h of life. Twelve neonatal male calves were assigned to one of the following groups: (1) calves not fed colostrum and slaughtered approximately 2 h postpartum (n = 3), (2) calves fed colostrum at 1 to 2 h and slaughtered 8 h postpartum (n = 3), (3) calves fed 2 colostrum meals (at 1-2 and 10-12 h) and slaughtered 24 h postpartum (n = 3), (4) calves fed 3 colostrum meals (at 1-2, 10-12, and 22-24 h) and slaughtered 36 h postpartum (n = 3). Mid-duodenal, jejunal, and ileal samples of the calves were collected after slaughter. We identified 1,678 phosphoproteins with approximately 3,080 phosphosites, which were mainly Ser (89.9%), Thr (9.8%), and Tyr (0.3%) residues; they belonged to the prodirected (52.9%), basic (20.4%), acidic (16.6%), and Tyr-directed (1.7%) motif categories. The regional differentially expressed phosphoproteins included zonula occludens 2, sorting nexin 12, and protein kinase C, which are mainly associated with developmental processes, intracellular transport, vesicle-mediated transport, and immune system process. They are enriched in the endocytosis, tight junction, insulin signaling, and focal adhesion pathways. The temporal differentially expressed phosphoproteins included occludin, epsin 1, and bridging integrator 1, which were mainly associated with macromolecule metabolic process, cell adhesion, and growth. They were enriched in the spliceosomes, adherens junctions, and tight junctions. The observed changes in the phosphoproteins in the tissues of small intestine suggest the protein phosphorylation plays an important role in nutrient transport and immune response of calves during early life, which needs to be confirmed in a larger study.


Assuntos
Insulinas , Fosfoproteínas , Gravidez , Feminino , Bovinos , Animais , Masculino , Animais Recém-Nascidos , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Ocludina/análise , Ocludina/metabolismo , Fosfopeptídeos/análise , Fosfopeptídeos/metabolismo , Nexinas de Classificação/análise , Nexinas de Classificação/metabolismo , Colostro/química , Intestino Delgado/metabolismo , Proteína Quinase C/análise , Proteína Quinase C/metabolismo
13.
Brief Bioinform ; 23(4)2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35753700

RESUMO

Even though several in silico tools are available for prediction of the phosphorylation sites for mammalian, yeast or plant proteins, currently no software is available for predicting phosphosites for Plasmodium proteins. However, the availability of significant amount of phospho-proteomics data during the last decade and advances in machine learning (ML) algorithms have opened up the opportunities for deciphering phosphorylation patterns of plasmodial system and developing ML-based phosphosite prediction tools for Plasmodium. We have developed Pf-Phospho, an ML-based method for prediction of phosphosites by training Random Forest classifiers using a large data set of 12 096 phosphosites of Plasmodium falciparum and Plasmodium bergei. Of the 12 096 known phosphosites, 75% of sites have been used for training/validation of the classifier, while remaining 25% have been used as completely unseen test data for blind testing. It is encouraging to note that Pf-Phospho can predict the kinase-independent phosphosites with 84% sensitivity, 75% specificity and 78% precision. In addition, it can also predict kinase-specific phosphosites for five plasmodial kinases-PfPKG, Plasmodium falciparum, PfPKA, PfPK7 and PbCDPK4 with high accuracy. Pf-Phospho (http://www.nii.ac.in/pfphospho.html) outperforms other widely used phosphosite prediction tools, which have been trained using mammalian phosphoproteome data. It also has been integrated with other widely used resources such as PlasmoDB, MPMP, Pfam and recently available ML-based predicted structures by AlphaFold2. Currently, Pf-phospho is the only bioinformatics resource available for ML-based prediction of phospho-signaling networks of Plasmodium and is a user-friendly platform for integrative analysis of phospho-signaling along with metabolic and protein-protein interaction networks.


Assuntos
Proteoma , Software , Animais , Aprendizado de Máquina , Mamíferos , Fosforilação , Plasmodium falciparum
14.
Dev Reprod ; 26(1): 1-12, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35528321

RESUMO

This study aimed to investigate the signal transduction of phosphorylation sites at the carboxyl (C)-terminal region of equine luteinizing hormone/chorionic gonadotropin receptor (eLH/ CGR). The eLH/CGR has a large extracellular domain of glycoprotein hormone receptors within the G protein-coupled receptors. We constructed a mutant (eLH/CGR-t656) of eLH/ CGR, in which the C-terminal cytoplasmic tail was truncated at the Phe656 residue, through polymerase chain reaction. The eLH/CGR-t656 removed 14 potential phosphorylation sites in the intracellular C-terminal region. The plasmids were transfected into Chinese hamster ovary (CHO)-K1 and PathHunter Parental cells expressing ß-arrestin, and agonist-induced cAMP responsiveness was analyzed. In CHO-K1 cells, those expressing eLH/CGR-t656 were lower than those expressing eLH/CGR wild-type (eLH/CGR-wt). The EC50 of the eLH/ CGR-t656 mutant was approximately 72.2% of the expression observed in eLH/CGR-wt. The maximal response in eLH/CGR-t656 also decreased to approximately 43% of that observed in eLH/CGR-wt. However, in PathHunter Parental cells, cAMP activity and maximal response of the eLH/CGR-t656 mutant were approximately 173.5% and 100.8%, respectively, of that of eLH/CGR-wt. These results provide evidence that the signal transduction of C-terminal phosphorylation in eLH/CGR plays a pivotal role in CHO-K1 cells. The cAMP level was recovered in PathHunter Parental cells expressing ß-arrestin. We suggest that the signal transduction of the C-terminal region phosphorylation sites is remarkably different depending on the cells expressing ß-arrestin in CHO-K1 cells.

15.
J Proteome Res ; 21(4): 1105-1113, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293747

RESUMO

Tyrosine kinases (TKs) are prominent targets in cancer therapies, and more than 30 TK inhibitors have been approved for treatments in tumors with abnormal TK. Disappointingly, an incomplete response can occur with the long-term use of TK inhibitors, known as cancer drug resistance, which can be caused by kinome reprogramming. Hence, monitoring the status of TKs is crucial for revealing the underlying drug resistance mechanism. Here, we describe a TK activity-representing peptide library-based multiple reaction monitoring (TARPL-MRM) strategy for directly inferring TK activities. The strategy facilitated the assay of 87 human TKs through target quantification of 301 phosphorylation sites. Using this strategy, we demonstrated the heterogeneity of TK activity in different non-small cell lung cancer (NSCLC) cell lines and assessed the response of TK activities to the EGFR inhibitor AZD9291 in NSCLC cells. We found that the acquired resistance of H1975 cells to AZD9291 requires SRC activity, and inhibition of SRC plays potential roles in overcoming this resistance. In summary, our work reveals that this strategy has the potential to become a powerful tool for TK studies, clinical diagnostics, and the discovery of new therapeutic targets.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Biblioteca de Peptídeos , Proteínas Tirosina Quinases/metabolismo , Tirosina
16.
Genes Genomics ; 44(2): 175-185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35038160

RESUMO

BACKGROUND: Glutamine-fructose-6-phosphate aminotransferase (GFPT) is a key factor in the hexosamine metabolism pathway. It regulates the downstream factor O-GlcNAc to change cell function and plays an important role in the metabolism and immune process of tissues and organs. However, the evolutionary relationship of GFPT family proteins in vertebrates has not been elucidated. OBJECTIVE: To deduce and explore the evolution and function of vertebrate GFPT family. METHODS: 18 GFPT sequences were obtained from Homo sapiens (H. sapiens), Trachypithecus francoisi (T. francoisi), Mus musculus (M. musculus), Rattus norvegicus (R. norvegicus), Gallus gallus (G. gallus), Zootoca vivipara (Z. vivipara), Xenopus tropicalis (X. tropicalis), Danio rerio (D. rerio), Rhincodon typus (R. typus), Plasmodium relictum from National Center for Biotechnology Information (NCBI). The physical and chemical characteristics and molecular evolution of GFPT family proteins and nucleic acid sequences were analyzed by ClustalX2, Gene Doc, MEGA-X, SMART, Datamonkey, R etc. RESULTS: Based on the neighbor-joining (NJ) phylogenetic tree and evolution fingerprints, GFPT family members of vertebrates can be divided into two groups: the GFPT1 group and the GFPT2 group. Seven positive selection sites were identified by IFEL and integrated methods mixed effects model of evolution (MEME) and fixed effects likelihood (REL). Finally, we predicted 28 phosphorylation sites and 18 ubiquitousness sites in the human GFPT1 sequence, 10 phosphorylation sites, and five ubiquitousness sites in GFPT2. Gene ontology (GO) analyzes the protein molecules and KEGG signaling pathways of vertebrates interacting with GFPT family proteins. CONCLUSIONS: Our work confirmed that higher animals GFPT family may have differentiated GFPT1 and GFPT2, which meets their own functional needs. This knowledge answers the question what the origin and evolution of GFPT family in vertebrates and provided the basis for disease treatment and function research of GFPT protein.


Assuntos
Evolução Molecular , Peixe-Zebra , Animais , Sequência de Bases , Ontologia Genética , Camundongos , Filogenia , Ratos
17.
Front Nutr ; 9: 1006739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618708

RESUMO

Skeletal muscle of livestock is composed of both fast- and slow-twitch muscle fibers, which are key factors in their meat quality. However, the role of protein phosphorylation in muscle fiber type is not completely understood. Here, a fast-twitch (biceps femoris, BF) and slow-twitch (soleus, SOL) muscle tissue sample was collected from three male offspring of Duroc and Meishan pigs. We demonstrate that the meat quality of SOL muscle is significantly better than that of BF muscle. We further used phosphoproteomic profiling of BF and SOL muscles to identify differences between these muscle types. A total of 2,327 phosphorylation sites from 770 phosphoproteins were identified. Among these sites, 287 differentially expressed phosphorylation sites (DEPSs) were identified between BF and SOL. GO and KEGG enrichment analysis of proteins containing DEPSs showed that these phosphorylated proteins were enriched in the glycolytic process GO term and the AMPK signaling pathway. A protein-protein interaction (PPI) analysis reveals that these phosphorylated proteins interact with each other to regulate the transformation of muscle fiber type. These analyses reveal that protein phosphorylation modifications are involved in porcine skeletal muscle fiber type transformation. This study provides new insights into the molecular mechanisms by which protein phosphorylation regulates muscle fiber type transformation and meat quality in pigs.

18.
Mol Cells ; 44(7): 500-516, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34158421

RESUMO

Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.


Assuntos
Cardiomegalia/genética , Fosforilação/genética , Proteômica/métodos , Animais , Cardiomegalia/patologia , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Transdução de Sinais
19.
Anal Biochem ; 612: 113955, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949607

RESUMO

Phosphorylation is a ubiquitous type of post-translational modification (PTM) that occurs in both eukaryotic and prokaryotic cells where in a phosphate group binds with amino acid residues. These specific residues, i.e., serine (S), threonine (T), and tyrosine (Y), exhibit diverse functions at the molecular level. Recent studies have determined that some diseases such as cancer, diabetes, and neurodegenerative diseases are caused by abnormal phosphorylation. Based on its potential applications in biological research and drug development, the large-scale identification of phosphorylation sites has attracted interest. Existing wet-lab technologies for targeting phosphorylation sites are overpriced and time consuming. Thus, computational algorithms that can efficiently accelerate the annotation of phosphorylation sites from massive protein sequences are needed. Numerous machine learning-based methods have been implemented for phosphorylation sites prediction. However, despite extensive efforts, existing computational approaches continue to have inadequate performance, particularly in terms of overall ACC, MCC, and AUC. In this paper, we report a novel deep learning-based predictor to overcome these performance hurdles, DeepPPSite, which was constructed using a stacked long short-term memory recurrent network for predicting phosphorylation sites. The proposed technique expediently learns the protein representations from conjoint protein descriptors. The experimental results indicated that our model achieved superior performance on the training dataset for S, T and Y, with MCC values of 0.608, 0.602, and 0.558, respectively, using a 10-fold cross-validation test. We further determined the generalization efficacy of the proposed predictor DeepPPSite by conducting a rigorous independent test. The predictive MCC values were 0.358, 0.356, and 0.350 for the S, T, and Y phosphorylation sites, respectively. Rigorous cross-validation and independent validation tests for the three types of phosphorylation sites demonstrated that the designed DeepPPSite tool significantly outperforms state-of-the-art methods.


Assuntos
Biologia Computacional/métodos , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Aprendizado Profundo , Modelos Estatísticos , Fosforilação , Curva ROC , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Tirosina/química , Tirosina/metabolismo
20.
Comb Chem High Throughput Screen ; 24(7): 1126-1136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32875975

RESUMO

AIM: The present study aims to investigate the effect of flavonoids from stem and leaf of Scutellaria Baicalensis Georgi (SSF) on multi-sites phosphorylation of tau protein in the cerebral cortex and hippocampus of rats induced by okadaic acid (OA) and the regulative mechanism of the protein kinases. METHODS: The model of AD-like memory impairment and neuronal injuries was established in male SD rats who were microinjected with OA (200 ng/kg) to establish a memory impairment model and screened for successful model rats by Morris water maze on day 21 after surgery. The successful model rats were continuously administered with intragastric infusion (ig) SSF 25, 50 and 100 mg/kg or Ginkgo biloba leaves flavonoids (GLF) 200 mg/kg for 36 d. The relative protein expressed levels of phosphorylated tau protein at sites of Ser199, Ser202, Ser214, Ser404 and Thr231, protein kinases (CDK5, PKA, pTyr216-GSK3ß and pSer9-GSK3ß) were detected by Western blotting. RESULTS: The relative protein expressed levels of p-tau(Ser199), p-tau(Ser202), p-tau(Ser214), p-- tau(Ser404), p-tau(Thr231) and pTyr216-GSK3ß were significantly increased in both cerebral cortex and hippocampus regions of the model rats subjected to intracerebroventricular injection of OA (P<0.01), while the protein expressed levels of CDK5, PKA and pSer9-GSK3ß (P<0.01) were reduced. SSF can dramatically reverse these increments in phosphorylated tau protein levels (P<0.01) and differently regulate the protein expressed levels of CDK5, PKA and GSK3ß (P<0.01) in rats' cerebral cortex and hippocampus induced by OA. GLF also exhibit a similar effect to SSF. CONCLUSION: The results demonstrated that SSF could inhibit the hyperphosphorylation of tau in rats' cerebral cortex and hippocampus induced by microinjection of OA, which may be related to the activities of protein kinase CDK5, PKA and GSK3ß.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Flavonoides/farmacologia , Proteínas Quinases/metabolismo , Scutellaria baicalensis/química , Proteínas tau/antagonistas & inibidores , Animais , Disfunção Cognitiva/induzido quimicamente , Modelos Animais de Doenças , Flavonoides/química , Flavonoides/isolamento & purificação , Masculino , Ácido Okadáico/administração & dosagem , Fosforilação/efeitos dos fármacos , Folhas de Planta/química , Caules de Planta/química , Ratos , Ratos Sprague-Dawley , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA