Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Food Chem ; 462: 140693, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208722

RESUMO

A rapid photoelectrochemical (PEC) sensor was constructed for nitrite detection in food based on the one-step chemical etching strategy of BiOCl/Zn0.5Cd0.5S (BOC/ZCS) nanocomposites by nitrite. BOC/ZCS heterojunction was prepared by a simple coprecipitation method, and it was found that BOC/ZCS showed significant photoelectrochemical (PEC) activity. The results of this study confirmed that the decrease in the photocurrent of the sensor was linked to the etching of ZCS by nitrite under acidic conditions. Under optimized conditions, the BOC/ZCS-based PEC sensor showed good analytical properties for detecting nitrite, with linear ranges of 1-100 µM and 100-600 µM. The detection limit of the sensor was 0.41 µM (S/N = 3). Excellent repeatability, reproducibility, low background noise, and immunity to interference were demonstrated using the proposed system, and satisfactory results were achieved for the nitrite assay using real samples. These results demonstrate a new method for nitrite detection developed using the proposed PEC sensor.


Assuntos
Técnicas Eletroquímicas , Limite de Detecção , Nitritos , Nitritos/análise , Técnicas Eletroquímicas/instrumentação , Bismuto/química , Zinco/química , Zinco/análise , Nanocompostos/química , Processos Fotoquímicos , Contaminação de Alimentos/análise
2.
Talanta ; 281: 126800, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39241644

RESUMO

Dopamine (DA) is an important neurotransmitter. Abnormal levels of it in human body can increase the risk of many neurological diseases. Thus, developing a simple, sensitive detection method of DA is crucial. In this paper, we reported a "signal-off" anodic PEC sensor based on fluorine-doped tin oxide (FTO) glass modified ZnIn2S4/TiO2 heterojunction (ZnIn2S4/TiO2/FTO) for DA detection. The experimental results show that the ZnIn2S4/TiO2/FTO electrode prepared by two-step hydrothermal method has a good photocurrent response performance under visible light. After incubation with DA, the photocurrent response decreases significantly because DA can rapidly oxidizes to polydopamine (PDA) through the action of superoxide radical (·O2-) and hydroxyl radical (·OH) intermediate species, which are intermediates produced by the ZnIn2S4/TiO2/FTO electrode under visible light irradiation. The constructed PEC sensor has a good linear relationship in the concentration range from 0.5 to 1000.0 µM, and its detection limit is 0.253 µM. In addition, the results of the proposed PEC sensor in real serum samples are satisfactory. The PEC sensor provides a promising platform for DA detection, laying the foundation for future advances in disease diagnosis and prevention.


Assuntos
Dopamina , Técnicas Eletroquímicas , Eletrodos , Processos Fotoquímicos , Compostos de Estanho , Titânio , Titânio/química , Dopamina/análise , Dopamina/sangue , Dopamina/química , Técnicas Eletroquímicas/métodos , Humanos , Compostos de Estanho/química , Zinco/química , Luz , Índio/química , Limite de Detecção
3.
Biosens Bioelectron ; 267: 116870, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39454365

RESUMO

The development of high photoactive cathode materials combined with the formation of a stable interface are considered important factors for the selective and sensitive photoelectrochemical (PEC) detection of tetracycline (TC). Along these lines, in this work, a novel type II heterostructure composed of two-dimensional (2D) covalent organic frameworks confined to zero-dimensional (0D) carbon quantum dots (CDs/COFs) film was successfully synthesized using the rapid in-situ polymerization method at room temperature. The PEC signal of CDs/COFs was significantly amplified by improving the light absorption and electron transfer capabilities. Furthermore, a cathodic molecularly imprinted PEC sensor (MIP-PEC) for the detection of TC was constructed through fast in-situ Ultraviolet (UV) photopolymerization on the electrode. Finally, a "turn-off" PEC cathodic signal was achieved based on the selective recognition of the imprinted cavity and the mechanism of steric hindrance increase. Under optimal conditions, the proposed sensor demonstrated a wide linear relationship with TC in the concentration range of 5.00 × 10-12-1.00 × 10-5 M, with a detection limit as low as 6.00 × 10-13 M. Meanwhile, excellent stability, selectivity, reproducibility, and applicability in real river samples was recorded. Our work provides an effective and rapid in situ construction method for fabricating highly photoactive cathode heterojunctions and uniform stable selective MIP-PEC sensing interfaces, yielding accurate antibiotics detection in the environment.

4.
Environ Pollut ; 361: 124892, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39241949

RESUMO

Lead ions (Pb2+) are heavy metal environmental pollutants that can significantly impact biological health. In this study, the synthesis of a ternary nanocomposite, ErVO4/P@g-C3N4/SnS2, was achieved using a combination of hydrothermal synthesis and mechanical grinding. The as-fabricated photoelectrochemical (PEC) sensor was found to be an ideal substrate for Pb2+ detection with high sensitivity and reliability. The ErVO4/P@g-C3N4/SnS2/FTO was selected as the substrate because of its remarkable and reliable photocurrent response. The Pb2+ sensor exhibited a low detection limit of 0.1 pM and a broad linear range of 0.002-0.2 nM. Moreover, the sensor exhibited outstanding stability, selectivity, and reproducibility. In real-time applications, it exhibited stable recovery and a low relative standard deviation, ensuring reliable and accurate measurements. The as-prepared PEC sensor was highly stable for the detection of Pb2+ in different water samples. This promising characteristic highlights its significant potential for use in the detection of environmental pollutants.

5.
Mikrochim Acta ; 191(10): 590, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259417

RESUMO

Photoelectrochemical (PEC) detection as a potential development strategy for hydrogen peroxide and dopamine sensors has received extensive attentions. Herein, BiOI/ZnIn2S4-X (X = n (BiOI)/n(ZnIn2S4)) heterojunction was synthesized using various molar ratios via a two-step method. A series of characterization techniques were employed to analyze the composition, surface structure, valence state, and optical properties of BiOI/ZnIn2S4-X. The results show that BiOI/ZnIn2S4-X perform significantly better than both BiOI and ZnIn2S4. Furthermore, BiOI/ZnIn2S4-9% exhibits superior visible light absorption capacity and photocurrent response among all of the BiOI/ZnIn2S4-X tested. Therefore, a PEC sensor was developed using BiOI/ZnIn2S4-9% for the detection of hydrogen peroxide and dopamine. The linear detection range for hydrogen peroxide spans from to 1 ~ 40,000 µM, with the LOD of 0.036 µM (S/N = 3). For dopamine, the corresponding values are 2 ~ 250 µM for the linear detection range, and 0.017 µM for the LOD, respectively. The sensor exhibits demonstrates excellent stability, reproducibility and resistance to interference, enabling the detection of real samples and thus holds promising application potential.

6.
Chemosphere ; 365: 143336, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39277039

RESUMO

Photoelectrochemical (PEC) detection technology is key for fighting pollution, leveraging the photoelectric conversion of the photoelectrode material. A specialized photoelectrode was developed to detect Hg2+ ions with exceptional sensitivity, utilizing an anodic PEC sensor composed of Er3NbO7/P@g-C3N4/SnS2 ternary nanocomposite. Rare earth metal niobates (RENs) were chosen due to their underexplored potential, whose performance was enhanced through bandgap engineering and surface modification, facilitated by P@g-C3N4 as an immobilization matrix and SnS2, belonging to the I-IV semiconductors category fostering hybrid heterojunction formation for boasting optical properties and suitable redox potentials. Introducing Hg2+ into the system, a specific amalgamation reaction occurs between reduced Hg and Sn. This reaction obstructs electron transfer to the FTO electrode surface, leading to the recombination of charges. The proposed PEC sensor exhibited remarkable analytical performance for Hg2+ detection, high sensitivity, a detection limit of 0.019 pM, excellent selectivity, and a detectable concentration range of 0.002-0.15 nM. Additionally, it demonstrated good recovery and low relative standard deviation when analyzing Hg2+ in water samples, highlighting the potential application of the heterostructure in detecting heavy metal ions via PEC technology.


Assuntos
Técnicas Eletroquímicas , Mercúrio , Nanocompostos , Sulfetos , Compostos de Estanho , Poluentes Químicos da Água , Mercúrio/análise , Nanocompostos/química , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas/métodos , Compostos de Estanho/química , Sulfetos/química , Luz , Eletrodos , Limite de Detecção , Nióbio/química , Processos Fotoquímicos , Monitoramento Ambiental/métodos , Grafite/química , Compostos de Nitrogênio/química , Nitrilas
7.
Mikrochim Acta ; 191(9): 509, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101972

RESUMO

A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 µM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.

8.
ACS Appl Mater Interfaces ; 16(33): 43451-43461, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39121384

RESUMO

We present a nonlinear spectroelectrochemical technique to investigate photosynthetic protein complexes. The PEC2DES setup combines photoelectrochemical detection (PEC) that selectively probes the protein photogenerated charges output with two-dimensional electronic spectroscopy (2DES) excitation that spreads the nonlinear optical response of the system in an excitation-detection map. PEC allows us to distinguish the contribution of charge separation (CS) from other de-excitation pathways, whereas 2DES allows us to disentangle congested spectral bands and evaluate the exciton dynamics (decays and coherences) of the photosystem complex. We have developed in operando phase-modulated 2DES by measuring the photoelectrochemical reaction rate in a biohybrid electrode functionalized with a plant photosystem complex I-light harvesting complex I (PSI-LHCI) layer. Optimizing the photoelectrochemical current signal yields reliable linear spectra unequivocally associated with PSI-LHCI. The 2DES signal is validated by nonlinear features like the characteristic vibrational coherence at 750 cm-1. However, no energy transfer dynamics is observed within the 450 fs experimental window. These intriguing results are discussed in the context of incoherent mixing resulting in reduced nonlinear contrast for multichromophoric complexes, such as the 160 chlorophyll PSI. The presented PEC2DES method identifies generated charges unlike purely optical 2DES and opens the way to probe the CS channel in multichromophoric complexes.

9.
Anal Chim Acta ; 1318: 342921, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39067913

RESUMO

BACKGROUND: This study presents a novel photoelectrochemical (PEC) conversion method for ion-selective electrodes (ISEs) based on CdS semiconductor film. The motivation stems from the need to enhance the sensitivity and precision of ISEs for various analytical applications. RESULTS: We synthesized CdS film on FTO conductive glass via a hydrothermal method and utilized this electrode as the working electrode. Under visible light irradiation, CdS generated photocurrent that is proportional to its applied voltage within a large potential window of ∼0.80 V. Ascorbic acid (AA) effectively inhibited electron-hole complexation, enhancing photocurrent stability. Potential modulation from ISEs acting as the reference electrode further regulated photocurrent generation, demonstrating excellent sensitivity and linearity for a wide range of ion concentrations. The method was validated by detecting serum calcium levels, showing agreement with traditional ISEs potentiometry and ICP-OES methods. SIGNIFICANCE: This photoelectrochemical conversion strategy offers a promising approach for sensitive and accurate ion detection, with potential applications in clinical diagnostics and environmental monitoring.

10.
Mikrochim Acta ; 191(7): 383, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861005

RESUMO

A competitive-type photoelectrochemical (PEC) aptasensor coupled with a novel Au@Cd:SnO2/SnS2 nanocomposite was designed for the detection of 17ß-estradiol (E2) in microfluidic devices. The designed Au@Cd:SnO2/SnS2 nanocomposites exhibit high photoelectrochemical activity owing to the good matching of cascade band-edge and the efficient separation of photo-generated e-/h+ pairs derived from the Cd-doped defects in the energy level. The Au@Cd:SnO2/SnS2 nanocomposites were loaded into carbon paste electrodes (CPEs) to immobilize complementary DNA (cDNA) and estradiol aptamer probe DNA (E2-Apt), forming a double-strand DNA structure on the CPE surface. As the target E2 interacts with the double-strand DNA, E2-Apt is sensitively released from the CPE, subsequently increasing the photocurrent intensity due to the reduced steric hindrance of the electrode surface. The competitive-type sensing mechanism, combined with high PEC activity of the Au@Cd:SnO2/SnS2 nanocomposites, contributed to the rapid and sensitive detection of E2 in a "signal on" manner. Under the optimized conditions, the PEC aptasensor exhibited a linear range from 1.0 × 10-13 mol L-1 to 3.2 × 10-6 mol L-1 and a detection limit of 1.2 × 10-14 mol L-1 (S/N = 3). Moreover, the integration of microfluidic device with smartphone controlled portable electrochemical workstation enables the on-site detection of E2. The small sample volume (10 µL) and short analysis time (40 min) demonstrated the great potential of this strategy for E2 detection in rat serum and river water. With these advantages, the PEC aptasensor can be utilized for point-of-care testing (POCT) in both clinical and environmental applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Estradiol , Ouro , Limite de Detecção , Nanocompostos , Sulfetos , Compostos de Estanho , Compostos de Estanho/química , Aptâmeros de Nucleotídeos/química , Nanocompostos/química , Ouro/química , Estradiol/análise , Estradiol/sangue , Estradiol/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Sulfetos/química , Cádmio/química , Cádmio/análise , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip
11.
Mikrochim Acta ; 191(7): 389, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871997

RESUMO

A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.


Assuntos
Técnicas Eletroquímicas , Glutationa , Indóis , Isoindóis , Titânio , Titânio/química , Glutationa/química , Glutationa/análise , Indóis/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Processos Fotoquímicos , Eletrodos
12.
Talanta ; 278: 126464, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936106

RESUMO

Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.


Assuntos
Compostos de Cádmio , Técnicas Eletroquímicas , Estruturas Metalorgânicas , Tricotecenos , Tricotecenos/análise , Tricotecenos/química , Técnicas Eletroquímicas/métodos , Compostos de Cádmio/química , Estruturas Metalorgânicas/química , Sulfetos/química , Limite de Detecção , Processos Fotoquímicos , Troca Iônica
13.
Nanomicro Lett ; 16(1): 192, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743197

RESUMO

Photosensors with versatile functionalities have emerged as a cornerstone for breakthroughs in the future optoelectronic systems across a wide range of applications. In particular, emerging photoelectrochemical (PEC)-type devices have recently attracted extensive interest in liquid-based biosensing applications due to their natural electrolyte-assisted operating characteristics. Herein, a PEC-type photosensor was carefully designed and constructed by employing gallium nitride (GaN) p-n homojunction semiconductor nanowires on silicon, with the p-GaN segment strategically doped and then decorated with cobalt-nickel oxide (CoNiOx). Essentially, the p-n homojunction configuration with facile p-doping engineering improves carrier separation efficiency and facilitates carrier transfer to the nanowire surface, while CoNiOx decoration further boosts PEC reaction activity and carrier dynamics at the nanowire/electrolyte interface. Consequently, the constructed photosensor achieves a high responsivity of 247.8 mA W-1 while simultaneously exhibiting excellent operating stability. Strikingly, based on the remarkable stability and high responsivity of the device, a glucose sensing system was established with a demonstration of glucose level determination in real human serum. This work offers a feasible and universal approach in the pursuit of high-performance bio-related sensing applications via a rational design of PEC devices in the form of nanostructured architecture with strategic doping engineering.

14.
ACS Sens ; 9(5): 2684-2694, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38693685

RESUMO

Semiconductor-based photoelectrochemical (PEC) test protocols offer a viable solution for developing efficient individual health monitoring by converting light and chemical energy into electrical signals. However, slow reaction kinetics and electron-hole complexation at the interface limit their practical application. Here, we reported a triple-engineered CdS nanohierarchical structures (CdS NHs) modification scheme including morphology, defective states, and heterogeneous structure to achieve precise monitoring of the neurotransmitter dopamine (DA) in plasma and noninvasive body fluids. By precisely manipulating the Cd-S precursor, we achieved precise control over ternary CdS NHs and obtained well-defined layered self-assembled CdS NHs through a surface carbon treatment. The integration of defect states and the thin carbon layer effectively established carrier directional transfer pathways, thereby enhancing interface reaction sites and improving the conversion efficiency. The CdS NHs microelectrode fabricated demonstrated a remarkable negative response toward DA, thereby enabling the development of a miniature self-powered PEC device for precise quantification in human saliva. Additionally, the utilization of density functional theory calculations elucidated the structural characteristics of DA and the defect state of CdS, thus establishing crucial theoretical groundwork for optimizing the polymerization process of DA. The present study offers a potential engineering approach for developing high energy conversion efficiency PEC semiconductors as well as proposing a novel concept for designing sensitive testing strategies.


Assuntos
Compostos de Cádmio , Dopamina , Técnicas Eletroquímicas , Nanoestruturas , Neurotransmissores , Sulfetos , Compostos de Cádmio/química , Técnicas Eletroquímicas/métodos , Dopamina/análise , Dopamina/sangue , Nanoestruturas/química , Neurotransmissores/análise , Neurotransmissores/sangue , Humanos , Sulfetos/química , Processos Fotoquímicos , Saliva/química , Teoria da Densidade Funcional , Técnicas Biossensoriais/métodos , Semicondutores , Microeletrodos
15.
Talanta ; 276: 126206, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749163

RESUMO

As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 µM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.

16.
Mikrochim Acta ; 191(5): 232, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565740

RESUMO

A novel ternary heterojunction material In2O3/In2S3/ZnIn2S4 was synthesized, and a photoelectrochemical sensor was fabricated for the non-invasive test of dopamine (DA) in sweat. In2O3 multihollow microtubules were synthesized and then In2S3 was formed on their surface to construct a type-I heterojunction between In2S3 and In2O3. ZnIn2S4 was further introduced to form a Z-scheme heterojunction between In2S3/ZnIn2S4. Under photoexcitation, the photogenerated holes of In2O3 transferred to the valence band of In2S3, superimposed with the holes produced by In2S3, leads to a significantly higher photocatalytic oxidation capacity of In2O3/In2S3/ZnIn2S4 ternary composites than that of In2O3/In2S3. The Z-scheme heterojunction accelerates the transfer of photogenerated electrons accumulated on the type-I heterojunction. In the presence of DA, it is rapidly oxidized into polydopamine (PDA) by In2O3/In2S3, and the benzoquinone groups of PDA compete for the photogenerated electrons to reduce the current in the external circuit, whereby DA determination is achieved. Owing to the combination of type-I and Z-scheme heterojunction, the sensor showed extremely high sensitivity, with a detection limit of 3.94 × 10-12 mol/L. It is one of the most sensitive methods for DA detection reported and has been applied to the determination of DA in human sweat.


Assuntos
Dopamina , Suor , Humanos , Elétrons
17.
Mikrochim Acta ; 191(5): 277, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647714

RESUMO

Widely used organophosphorus pesticide triazophos (TAP) can easily cumulate in aquatic system due to its high stability chemically and photochemically and thus posing significant threat to aquatic creatures and humans' health. Urging demand for rapid determining TAP in water has risen. Photoelectrochemical (PEC) sensing turns out to be a good candidate for its simplicity in fabrication and swiftness in detection. Nevertheless, traditional PEC sensors often lack selectivity as their signal generation primarily relies on the oxidation of organic compounds in the electrolyte by photo-induced holes. To address this limitation, molecularly imprinted polymers (MIPs) can be in combined with PEC sensors to significantly enhance the selectivity. Here, we present a novel approach utilizing a PEC sensor enhanced by carbon-modified titanium dioxide molecularly imprinted polymers (MIP/C/TiO2 NTs). Carbon quantum dot (CQD) modification of titanium dioxide nanotube arrays (C/TiO2 NTs) was achieved through a one-step anodization process, effectively enhancing visible light absorption by narrowing the band gap of TiO2, and CQDs also function as sensitizer accelerating charge transfer for improved and stable photocurrent signals during detection. Our method further incorporates MIPs to heighten the selectivity of the PEC sensor. Electro-polymerization using cyclic voltammetry was employed to polymerize MIPs with pyrrole as the functional monomer and triazophos as the target molecule. The resultant MIP/C/TiO2 NT sensor exhibited remarkable sensitivity, with a detection limit of 0.03 nM (S/N = 3), alongside exceptional selectivity and stability for triazophos detection in water. This offers a promising avenue for efficient, cost-effective, and rapid monitoring of pesticide contaminants in aquatic environments, contributing to the broader goals of environmental preservation and public health.

18.
J Hazard Mater ; 470: 134216, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581877

RESUMO

In vivo monitoring of multiple pesticide contamination is of great significance for evaluating the health risks of different pesticides, agricultural production safety, and ecological and environmental assessment. Here, we report a hydrogel microneedle array coupled light-addressable photoelectrochemical sensor for tracking multiple pesticide uptake and elimination in living animals and plants, holding three prominent merits: i) enables in-situ detection of in vivo pesticides, avoiding cumbersome and complex sample transportation and handling processes; ii) allows repeated in vivo sampling of the same organism, improving tracking test controllability and accuracy; iii) avoids lethal sampling, providing a better understanding of the pesticides fate in living organisms. The coupled sensor is mechanically robust for withstanding more than 0.35 N per needle and highly swellable (800 %) for timely extraction of sufficient in vivo solution for analysis. For proof-of-concept, it achieves in-situ detection of atrazine, acetamiprid, and carbendazim efficiently and quantitatively in artificial agarose skin models, mouse skin interstitial fluids, and plant leaves with little inflammatory reaction. This simple, highly integrated, minimally invasive, and high-throughput in vivo monitoring method is ideal for future field environmental monitoring and plant and animal disease diagnosis.


Assuntos
Benzimidazóis , Carbamatos , Agulhas , Neonicotinoides , Praguicidas , Animais , Neonicotinoides/análise , Praguicidas/análise , Atrazina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Monitoramento Ambiental/métodos , Camundongos , Folhas de Planta/química , Luz , Hidrogéis/química , Pele/química
19.
Food Chem ; 450: 139261, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657344

RESUMO

This study employed an innovative copper oxide/cuprous oxide (CuO/Cu2O) polyhedron­cadmium sulphide quantum dots (CdS QDs) double Z-scheme heterostructure as a matrix for the cathodic PEC determination of mercury ions (Hg2+). First, the CuO/Cu2O polyhedral composite was prepared by calcining a copper-based metal organic framework (Cu-MOF). Subsequently, the amino-modified CuO/Cu2O was integrated with mercaptopropionic acid (MPA)-capped CdS QDs to form a CuO/Cu2O polyhedron-CdS QDs double Z-scheme heterostructure, producing a strong cathodic photocurrent. Importantly, this heterostructure exhibited a specifically reduced photocurrent for Hg2+ when using CdS QDs as Hg2+-recognition probe. This was attributed to the extreme destruction of the double Z-scheme heterostructure and the in situ formation of the CuO/Cu2O-CdS/HgS heterostructure. Besides, p-type HgS competed with the matrix for electron acceptors, further decreasing the photocurrent. Consequently, Hg2+ was sensitively assayed, with a low detection limit (0.11 pM). The as-prepared PEC sensor was also used to analyse Hg2+ in food and the environment.


Assuntos
Compostos de Cádmio , Cobre , Técnicas Eletroquímicas , Mercúrio , Estruturas Metalorgânicas , Pontos Quânticos , Sulfetos , Pontos Quânticos/química , Cobre/química , Mercúrio/análise , Mercúrio/química , Sulfetos/química , Compostos de Cádmio/química , Técnicas Eletroquímicas/instrumentação , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Eletrodos , Limite de Detecção
20.
Molecules ; 29(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338358

RESUMO

This paper presents the development of a photoelectrochemical sensor for hypochlorous acid (HOCl) detection, employing a phenothiazine-based organic photosensitizer (Dye-PZ). The designed probe, Dye-PZ, follows a D-π-A structure with phenothiazine as the electron-donating group and a cyano-substituted pyridine unit as the electron-accepting group. A specific reaction of the phenothiazine sulfur atom with HOCl enables selective recognition. The covalent immobilization of Dye-PZ onto a titanium dioxide nanorod-coated fluorine-doped tin oxide electrode (FTO/TiO2) using bromo-silane coupling agent (BrPTMS) resulted in the fabrication of the photoanode FTO/TiO2/BrPTMS/Dye-PZ. The photoanode exhibited a significant photoresponse under visible-light irradiation, with a subsequent reduction in photocurrent upon reaction with HOCl. The oxidation of the phenothiazine sulfur atom to a sulfoxide diminished the internal charge transfer (ICT) effect. Leveraging this principle, the successful photoelectrochemical sensing of HOCl was achieved. The sensor showed high stability, excellent reproducibility, and selective sensitivity for HOCl detection. Our study provides a novel approach for the development of efficient photoelectrochemical sensors based on organic photosensitizers, with promising applications in water quality monitoring and biosensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA