Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050650

RESUMO

This paper is a review of recent applications of a laser photothermal mirage technique for sensing and measuring the thermal resistance of joint layers in modern electronic devices. A straightforward theoretical model of the interfacial thermal resistance based on the formation of a thin intermediate layer between jointed solids is described. It was experimentally shown that thermal properties of solder layers cannot be evaluated simply on the base of averaging the thermal properties of solder components. The review presents the laser thermal wave methodology for measuring thermal parameters of soldered and adhesively bonded joints. The developed theoretical model makes it possible to carry out a quantitative estimation of local thermal conductivities of joints and their thermal resistances by fitting theoretical results with experimental data obtained by the laser beam deflection method. The joints made with lead-containing and lead-free solders were studied. The anomalous distribution of thermal properties in the solder layer is explained by the diffusion of various atoms detected by energy dispersive X-ray spectroscopy. The laser beam deflection method made it possible to reveal a strong influence of the surface pretreatment quality on the interfacial thermal resistance.

2.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683739

RESUMO

The extremely small size of micro-/nanomaterials limits the application of conventional thermal measurement methods using a contact heating source or probing sensor. Therefore, non-contact thermal measurement methods are preferable in micro-/nanoscale thermal characterization. In this review, one of the non-contact thermal measurement methods, photothermal (PT) technique based on thermal radiation, is introduced. When subjected to laser heating with controllable modulation frequencies, surface thermal radiation carries fruitful information for thermal property determination. As thermal properties are closely related to the internal structure of materials, for micro-/nanomaterials, PT technique can measure not only thermal properties but also features in the micro-/nanostructure. Practical applications of PT technique in the thermal measurement of micro-/nanomaterials are then reviewed, including special wall-structure investigation in multiwall carbon nanotubes, porosity determination in nanomaterial assemblies, and the observation of amorphous/crystalline structure transformation in proteins in heat treatment. Furthermore, the limitations and future application extensions are discussed.

3.
Talanta ; 183: 158-163, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567158

RESUMO

In the thermal lens experimental set-up we replaced the commonly employed pump laser by a halogen lamp, combined with an interference filter, providing a tuneable, nearly monochromatic pump source over the range of wavelengths 430-710 nm. Counter-propagating pump and probe beams are used and a 1 mm path-length sample cell together with the interference filter makes an optical cavity, providing amplification of the thermal lens signal, which leads to enhancement of the measurement sensitivity, and enables detection of absorbances on the order of 5 × 10-6. Amplified thermal lens signal allows us to replace the typical lock-in amplifier and digital oscilloscope with a silicon photodetector, Arduino, and a personal computer, offering the possibility for a compact, robust and portable device, useful for in-field absorption measurements in low concentration or weakly absorbing species. The use of a white light source for optical pumping, an interference filter for wavelength selection and direct diagnostic of the thermal lens signal increase the versatility of the instrument and simplifies substantially the experimental setup. Determination of Fe(II) concentrations at parts per billion levels was performed by the described white-light thermal lens spectrophotometer and the absorption spectrum for 50 µgL-1 Fe(II)-1,10-phenanthroline was well reproduced with an average measurement precision of 4%. The obtained limits of detection and quantitation of Fe(II) determination at 510 nm are 3 µgL-1 and 11 µgL-1, respectively. The calibration curve was linear in the concentration range of LOQ-500 µgL-1 with reproducibility between 2% and 6%, confirming that this instrument provides good spectrometric capabilities such as high sensitivity, tuneability and good reproducibility. In addition, the versatility of the instrument was demonstrated by recording the photothermal spectrum of gold nanostructured material and determination of excitation wavelength with most efficient optical to thermal energy conversion, which differs considerably (cca 100 nm) from the absorption maximum of the investigated sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA