Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(34): 23310-23319, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39158149

RESUMO

Ferroelectric all-inorganic halide perovskite nanocrystals with both spontaneous polarization and visible light absorption are promising candidates for designing ferroelectric photovoltaic applications. It remains a challenge to realize ferroelectric photovoltaic devices with all-inorganic halide perovskites that can be operated in the absence of an external electric field. Here we report that a popular all-inorganic halide perovskite nanocrystal, CsPbBr3, exhibits a ferroelectricity-driven photovoltaic effect under visible light in the absence of an external electric field. Pristine CsPbBr3 nanocrystals exhibit intrinsic ferroelectric key properties with a notable saturated polarization of ∼0.15 µC/cm2 and a high Curie temperature of 462 K, driven by the stereochemical activity of the Pb(II) lone pair. Furthermore, application of an external electric field allows the photovoltaic effect to be enhanced and the spontaneous polarization to be switched with the direction of the electric field. CsPbBr3 nanocrystals exhibit a robust fatigue performance and a prolonged photoresponse under continuous illumination in the absence of an external electric field. These findings establish all-inorganic halide perovskite nanocrystals as potential candidates for designing photoferroelectric devices by coupling optical functionalities and ferroelectric responses.

2.
Nano Lett ; 24(33): 10322-10330, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39133825

RESUMO

Light-to-electricity conversion is crucial for energy harvesting and photodetection, requiring efficient electron-hole pair separation to prevent recombination. Traditional junction-based mechanisms using built-in electric fields fail in nonbarrier regions. Homogeneous material harvesting under a photovoltaic effect is appealing but is only realized in noncentrosymmetric systems via a bulk photovoltaic effect. Here we report the realization of a photovoltaic effect by employing surface acoustic waves (SAWs) to generate zero-bias photocurrent in the conventional layered semiconductor MoSe2. SAWs induce periodic modulation to electronic bands and drag the photoexcited pairs toward the traveling direction. The photocurrent is extracted from a local barrier. The separation of generation and extraction processes suppresses recombination and yields a large nonlocal photoresponse. We distinguish the acousto-electric drag and electron-hole pair separation effect by fabricating devices of different configurations. The acousto-drag photovoltaic effect, enabled by piezoelectric integration, offers an efficient light-to-electricity conversion method, independent of semiconductor crystal symmetry.

3.
Small ; : e2403965, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994696

RESUMO

Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈  1.4 cm2V-1s-1 and a subthreshold swing SS ≈ 10 V dec-1. Current-voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW-1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.

4.
Heliyon ; 10(13): e33569, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040305

RESUMO

In this paper, we prepared and investigated the electrical switching behaviors of Cu3P/Ag2S heterojunction in the absence/presence of light/heat excitation. The structure exhibited bipolar memristor characteristics. The resistive switching mechanism is due to the formation of Ag conductive filaments and phase transition in Cu3P. We found that the resistance ratio (ROFF/RON) increased by a factor of 1.4/1.8 after light/heat excitation. The underlying mechanism was due to the photoelectric effect/Seebeck effect. Our results are helpful for the understanding of the resistive switching performance of Cu3P/Ag2S junctions, providing valuable insights into the factors influencing resistive switching performance and a clue for the enhancement of the memristor performance.

5.
ACS Nano ; 18(28): 18743-18757, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38951720

RESUMO

Continuous rotation of a fragile, photosensitive microrod in a safe, flexible way remains challenging in spite of its importance to microelectro-mechanical systems. We propose a photovoltaic strategy to continuously rotate a fragile, fluorescent microrod on a LiNbO3/Fe (LN/Fe) substrate using a continuous wave visible (473 nm) laser beam with an ultralow power (few tens of µW) and a simple structure (Gaussian profile). This strategy does not require the laser spot to cover the entire microrod nor does it result in a sharp temperature rise on the microrod. Both experiments and simulation reveal that the strongest photovoltaic field generated beside the laser spot firmly traps one corner of the microrod and the axisymmetric photovoltaic field exerts an electrostatic torque on the microrod driving it to rotate continuously around the laser spot. The dependence of the rotation rate on the laser power indicates contributions from both deep and shallow photovoltaic centers. This rotation mode, combined with the transportation mode, enables the controllable movement of an individual microrod along any complex trajectory with any specific orientation. The tuning of the end-emitting spectrum and the photothermal cutting of the fluorescent microrod are also realized by properly configuring the laser illumination. By taking a microrod as the emitter and a polystyrene microsphere as the focusing lens, we demonstrate the photovoltaic assembly of a microscale light-source system with both spectrum and divergence-angle tunabilities, which are realized by adjusting the photoexcitation position along the microrod and the geometry relationship in the system, respectively.

6.
Nano Lett ; 24(21): 6337-6343, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38742772

RESUMO

The bulk photovoltaic effect (BPVE) offers an interesting approach to generate a steady photocurrent in a single-phase material under homogeneous illumination, and it has been extensively investigated in ferroelectrics exhibiting spontaneous polarization that breaks inversion symmetry. Flexoelectricity breaks inversion symmetry via a strain gradient in the otherwise nonpolar materials, enabling manipulation of ferroelectric order without an electric field. Combining these two effects, we demonstrate active mechanical control of BPVE in suspended 2-dimensional CuInP2S6 (CIPS) that is ferroelectric yet sensitive to electric field, which enables practical photodetection with an order of magnitude enhancement in performance. The suspended CIPS exhibits a 20-fold increase in photocurrent, which can be continuously modulated by either mechanical force or light polarization. The flexoelectrically engineered photodetection device, activated by air pressure and without any optimization, possesses a responsivity of 2.45 × 10-2 A/W and a detectivity of 1.73 × 1011 jones, which are superior to those of ferroelectric-based photodetection and comparable to those of the commercial Si photodiode.

7.
Nanomaterials (Basel) ; 14(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38786801

RESUMO

Infrared optoelectronic sensors have attracted considerable research interest over the past few decades due to their wide-ranging applications in military, healthcare, environmental monitoring, industrial inspection, and human-computer interaction systems. A comprehensive understanding of infrared optoelectronic sensors is of great importance for achieving their future optimization. This paper comprehensively reviews the recent advancements in infrared optoelectronic sensors. Firstly, their working mechanisms are elucidated. Then, the key metrics for evaluating an infrared optoelectronic sensor are introduced. Subsequently, an overview of promising materials and nanostructures for high-performance infrared optoelectronic sensors, along with the performances of state-of-the-art devices, is presented. Finally, the challenges facing infrared optoelectronic sensors are posed, and some perspectives for the optimization of infrared optoelectronic sensors are discussed, thereby paving the way for the development of future infrared optoelectronic sensors.

8.
ACS Nano ; 18(20): 13298-13307, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38727530

RESUMO

As a second-order nonlinear optical phenomenon, the bulk photovoltaic (BPV) effect is expected to break through the Shockley-Queisser limit of thermodynamic photoelectron conversion and improve the energy conversion efficiency of photovoltaic cells. Here, we have successfully induced a strong flexo-photovoltaic (FPV) effect, a form of BPV effect, in strained violet phosphorene nanosheets (VPNS) by utilizing strain engineering at the h-BN nanoedge, which was first observed in nontransition metal dichalcogenide (TMD) systems. This BPV effect was found to originate from the disruption of inversion symmetry induced by uniaxial strain applied to VPNS at the h-BN nanoedge. We have revealed the intricate relationship between the bulk photovoltaic effect and strain gradients in VPNS through thickness-dependent photovoltaic response experiments. A bulk photovoltaic coefficient of up to 1.3 × 10-3 V-1 and a polarization extinction ratio of 21.6 have been achieved by systematically optimizing the height of the h-BN nanoedge and the thickness of VPNS, surpassing those of reported TMD materials (typically less than 3). Our results have revealed the fundamental relationship between the FPV effect and the strain gradients in low-dimensional materials and inspired further exploration of optoelectronic phenomena in strain-gradient engineered materials.

9.
ACS Nano ; 18(22): 14198-14206, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771928

RESUMO

The ferroelectric photovoltaic effect (FPVE) enables alternate pathways for energy conversion that are not allowed in centrosymmetric materials. Understanding the dominant mechanism of the FPVE at the ultrathin limit is important for defining the ultimate efficiency. In contrast to the wide band gap conventional thin-film ferroelectrics, 2D α-In2Se3 has an ideal band gap of 1.3 eV and enables the fabrication of ultrathin and stable heterostructures, providing the perfect platform to explore FPVE in the nanoscale limit. Here, we study the ferroelectric layer thickness-dependent FPVE in vertical few-layer graphene/α-In2Se3/graphene heterostructures. We find that the short-circuit photocurrent is antiparallel to the ferroelectric polarization and increases exponentially with decreasing thickness. We show that the observed behavior is predicted by the depolarization field model, originating from the unscreened bound charges due to the finite density of states in semimetal few-layer graphene. As a result, the heterostructures show enhancement of the power conversion efficiency, reaching 2.56 × 10-3% under 100 W/cm2 in 18 nm thick α-In2Se3, approximately 275 times more than the 50 nm thick α-In2Se3. These results demonstrate the importance of the depolarization field at the nanoscale and define design principles for the potential of harnessing FPVE at reduced dimension.

10.
ACS Appl Mater Interfaces ; 16(21): 27813-27820, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38603540

RESUMO

Solar-blind photodetectors based on wide bandgap semiconductors have recently attracted a lot of interest. Nickel-containing spinel phase oxides, such as NiAl2O4, are stable p-type semiconductors. This paper describes a multifunctional solar-blind photodetector based on a NiAl2O4/4H-SiC heterojunction that utilizes photovoltaic effects. The position sensitivity reaches a value of 1589.7 mV/mm under 405 nm laser illumination, while the relaxation times of vertical photovoltaic (VPV) effect and lateral photovoltaic (LPV) effect under 266 nm laser illumination are only 0.32 and 0.42 µs, respectively. This junction was used to create a space optical communication system with sunlight having little effect on its optoelectronic properties. The ultrafast photovoltaic relaxation time makes NiAl2O4/4H-SiC a promising candidate for self-powered high-performance solar-blind detectors.

11.
Small Methods ; : e2301675, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459803

RESUMO

Currently, it is widely reported that the photovoltaic effect in ferroelectric materials can be promoted by the application of a piezoelectric force, an external electric field, and intense light illumination. Here, a semiconducting ferroelectric composition is introduced, (1-x) Ba0.06 Bi0.47 Na0.47 TiO3 -xMgCoO3 (abbreviated as xMgCo, where x = 0.02-0.08), synthesized through Mg/Co ions codoping. This process effectively narrows the optical bandgaps to a spectrum of 1.38-3.06 eV. Notably, the system exhibits a substantial increase in short-circuit photocurrent density (Jsc ), by the synergy of the electric, light, and thermal fields. The Jsc can still be further enhanced by the extra introduction of a force field. Additionally, the Jsc also shows an obvious increase after the high field pre-poling. The generation of a considerable number of oxygen vacancies due to the Co2+ /Co3+ mixed valence state (in a 1:3 ratio) contributes to the reduced optimal bandgap. The integration of Mg2+ ion at the A-site restrains the loss and sustains robust ferroelectricity (Pr  = 24.1 µC cm-2 ), high polarizability under an electric field, and a significant piezoelectric coefficient (d33  = 102 pC N-1 ). This study provides a novel perspective on the physical phenomena arising from the synergy of multiple fields in ferroelectric photovoltaic materials.

12.
ACS Nano ; 18(13): 9636-9644, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497667

RESUMO

A two-dimensional (2D) ferroelectric semiconductor, which is coupled with photosensitivity and room-temperature ferroelectricity, provides the possibility of coordinated conductance modulation by both electric field and light illumination and is promising for triggering the revolution of optoelectronics for monolithic multifunctional integration. Here, we report that semiconducting Sn2P2S6 crystals can be achieved in a 2D morphology using a chemical vapor transport approach with the assistant of space confinement and experimentally demonstrate the robust ferroelectricity in atomic-thin Sn2P2S6 nanosheet at room temperature. The intercorrelated programming of ferroelectric order along out-of-plane (OOP) and in-plane (IP) directions enables a tunable bulk photovoltaic (BPV) effect through multidirectional electrical control. By combining the capability of anisotropic in-plane optical absorption, a highly integrated Sn2P2S6 optoelectronic device vertically sandwiched with graphene electrodes yields the polarization-dependent open-circuit photovoltage with a dichroic ratio of 2.0 under 405 nm light illumination. The reintroduction of ferroelectric Sn2P2S6 to the 2D asymmetric semiconductor family provides possibilities to hardware implement of the self-powered polarization-sensitive photodetection and spotlights the promising applications for next-generation photovoltaic devices.

13.
ACS Appl Mater Interfaces ; 16(11): 14038-14046, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445951

RESUMO

The interplay between flexoelectric and optoelectronic characteristics provides a paradigm for studying emerging phenomena in various 2D materials. However, an effective way to induce a large and tunable strain gradient in 2D devices remains to be exploited. Herein, we propose a strategy to induce large flexoelectric effect in 2D ferroelectric CuInP2S6 by constructing a 1D-2D mixed-dimensional heterostructure. The strong flexoelectric effect is induced by enormous strain gradient up to 4.2 × 106 m-1 resulting from the underlying ZnO nanowires, which is further confirmed by the asymmetric coercive field and the red-shift in the absorption edge. The induced flexoelectric polarization efficiently boosts the self-powered photodetection performance. In addition, the improved photoresponse has a good correlation with the induced strain gradient, showing a consistent size-dependent flexoelectric effect. The mechanism of flexoelectric and optoelectronic coupling is proposed based on the Landau-Ginzburg-Devonshire double-well model, supported by density functional theory (DFT) calculations. This work provides a brand-new method to induce a strong flexoelectric effect in 2D materials, which is not restricted to crystal symmetry and thus offers unprecedented opportunities for state-of-the-art 2D devices.

14.
Small ; 20(30): e2310591, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38409636

RESUMO

The family of polar hybrid perovskites, in which bulk photovoltaic effects (BPVEs) drive steady photocurrent without bias voltage, have shown promising potentials in self-powered polarization-sensitive photodetection. However, reports of BPVEs in 3D perovskites remain scare, being mainly hindered by the limited dipole moment or lack of symmetry breaking. Herein, a polar 3D perovskitoid, (BDA)Pb2Br6 (BDA = NH3C4H8NH3), where the spontaneous polarization (Ps)-induced BPVE drives self-powered photodetection of polarized-light is reported. Emphatically, the edge-sharing Pb2Br10 dimer building unit allows the optical anisotropy and polarity in 3D (BDA)Pb2Br6, which triggers distinct optical absorption dichroism ratio of ≈2.80 and BPVE dictated photocurrent of 3.5 µA cm-2. Strikingly, these merits contribute to a polarization-sensitive photodetection with a high polarization ratio (≈4) under self-powered mode, beyond those of 2D hybrid perovskites and inorganic materials. This study highlights the potential of polar 3D perovskitoids toward intelligent optoelectronic applications.

15.
Angew Chem Int Ed Engl ; 63(11): e202320180, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38196036

RESUMO

Three-dimensional (3D) organic-inorganic hybrid perovskites (OIHPs) have achieved tremendous success in direct X-ray detection due to their high absorption coefficient and excellent carrier transport. However, owing to the centrosymmetry of classic 3D structures, these reported X-ray detectors mostly require external electrical fields to run, resulting in bulky overall circuitry, high energy consumption, and operational instability. Herein, we first report the unprecedented radiation photovoltage in 3D OIHP for efficient self-driven X-ray detection. Specifically, the 3D polar OIHP MhyPbBr3 (1, Mhy=methylhydrazine) shows an intrinsic radiation photovoltage (0.47 V) and large mobility-lifetime product (1.1×10-3  cm2 V-1 ) under X-ray irradiation. Strikingly, these excellent physical characteristics endow 1 with sensitive self-driven X-ray detection performance, showing a considerable sensitivity of 220 µC Gy-1 cm-2 , which surpasses those of most self-driven X-ray detectors. This work first explores highly sensitive self-driven X-ray detection in 3D polar OIHPs, shedding light on future practical applications.

16.
ACS Appl Mater Interfaces ; 16(3): 4271-4282, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194671

RESUMO

Controlled splitting of liquid droplets is a key function in many microfluidic applications. In recent years, various methodologies have been used to accomplish this task. Here, we present an optofluidic technique based on an engineered surface formed by coating a z-cut iron-doped lithium niobate crystal with a lubricant-infused layer, which provides a very slippery surface. Illuminating the crystal with a light spot induces surface charges of opposite signs on the two crystal faces because of the photovoltaic effect. If the light spot is sufficiently intense, millimetric water droplets placed near the illuminated spot split into two charged fragments, one fragment being trapped by the bright spot and the other moving away from it. The latter fragment does not move randomly but rather follows one of three well-defined trajectories separated by 120°, which reflect the anisotropic crystalline structure of Fe:LiNbO3. Numerical simulations explain the behavior of water droplets in the framework of the forces induced by the interplay of pyroelectric, piezoelectric, and photovoltaic effects, which originate simultaneously inside the illuminated crystal. Such a synergetic effect can provide a valuable feature in applications that require splitting and coalescence of droplets, such as chemical microreactors and biological encapsulation and screening.

17.
Small ; 20(14): e2306825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990356

RESUMO

Polar photovoltaic effect (PPE) has attracted great attention in regulating desired optoelectronic properties, which can be driven by order-disorder and displacive phase transitions. Bond-switching is also a feasible method to induce PPE, but such investigation is very rare. Lead-halide hybrid perovskite (LHHP) is an outstanding photodetection material; lead atoms possess rich coordination modes to provide possibilities to construct switchable bonds. Here, a unique perovskitizer N─Pb bond-switching is disclosed to induce polar photovoltage in the emerging LHHP, PA2MHy2Pb3Br10 (1, PA = n-propylamine, MHy = methylhydrazine). Interestingly, the perovskitizer MHy+ provides 2s2 lone pair while the Pb atom affords empty d orbitals, which coordinate with each other to generate a flexible N─Pb bond. Further, the introduction of N─Pb bonds results in a high distortion of the PbBr6 octahedron to form local polarity and further orientation to induce spontaneous polarization. More importantly, such a flexible N─Pb bond switching mechanism drives a notable PPE and controllable polarized photo-response, a polarization ratio up to 9.7 at the polar phase in striking contrast with the non-polar phase (1.03). The work provides the first demonstration of bond-switching to induce polar phase transition and polar photovoltage in the photoconductive hybrid perovskites for photoelectric applications.

18.
Small ; 20(23): e2310166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38145326

RESUMO

Polarization photodetection taking advantage of the anisotropy of 2D materials shines brilliantly in optoelectronic fields owing to differentiating optical information. However, the previously reported polarization detections are mostly dependent on external power sources, which is not conducive to device integration and energy conservation. Herein, a 2D polar perovskite (CBA)2CsPb2Br7 (CCPB, CBA = 4-chlorobenzyllamine) has been successfully synthesized, which shows anticipated bulk photovoltaic effect (BPVE) with an open-circuited photovoltage up to ≈0.2 V. Devices based on CCPB monomorph fulfill a fascinating self-powered polarized photodetection with a large polarization ratio of 2.7 at room temperature. Moreover, CCPB features a high phase-transition temperature (≈475 K) which prompts such self-powered polarized photodetection in a large temperature window of device operation, since BPVE generated by spontaneous polarization can only exist in the polar structure prior to the phase transition. Further computational investigation reveals the introduction of CBA+ with a large dipole moment contributes to quite large polarization (17.5 µC cm-2) and further super high phase transition temperature of CCPB. This study will promote the application of 2D perovskite materials for self-powered polarized photodetection in high-temperature conditions.

19.
Adv Sci (Weinh) ; 11(6): e2307593, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151904

RESUMO

Circularly polarized light (CPL) detection has wide applications in many fields, where the anisotropy factor (gIph ) is an important indicator to characterize the CPL detection performance. So far, many materials with high gIph have been reported, however, the exploration of the regulation of gIph is still in its infancy. Herein, two novel alternating chiral-achiral cations intercalation-type chiral hybrid perovskites (CHPs), named (R/S-1-phenylpropylamine)(propylamine)PbBr4 (1-R/S), exhibit above room-temperature (RT) polar-phase transition, which greatly regulates the gIph value. The gIph of 1-R is 0.04 in high-temperature phase chiral non-polar (P21 21 21 ) by applying 5 V bias, interestingly, with the temperature decrease, the gIph value in low-temperature phase chiral polar (P21 ) gradually increases (0.22@360K, 0.40@340K, 0.47@320K), and finally reaches a maximum of 0.5 at RT. Such value is not only the highest among 2D CHPs to date, but presents a 12.5-fold amplification compared with 0.04. Further, this rare phenomenon should be attributed to the built-in electric field induced by the polar photovoltaic effect, which sheds light on further obtaining CHPs with large gIph .

20.
Nano Lett ; 23(24): 11645-11654, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38088857

RESUMO

Tunable photovoltaic photodetectors are of significant relevance in the fields of programmable and neuromorphic optoelectronics. However, their widespread adoption is hindered by intricate architectural design and energy consumption challenges. This study employs a nonvolatile MoTe2/hexagonal boron nitride/graphene semifloating photodetector to address these issues. Programed with pulsed gate voltage, the MoTe2 channel can be reconfigured from an n+-n to a p-n homojunction and the photocurrent transition changes from negative to positive values. Scanning photocurrent mapping reveals that the negative and positive photocurrents are attributed to Schottky junction and p-n homojunction, respectively. In the p-n configuration, the device demonstrates self-driven, linear, rapid response (∼3 ms), and broadband sensitivity (from 405 to 1500 nm) for photodetection, with typical performances of responsivity at ∼0.5 A/W and detectivity ∼1.6 × 1012 Jones under 635 nm illumination. These outstanding photodetection capabilities emphasize the potential of the semifloating photodetector as a pioneering approach for advancing logical and nonvolatile optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA