Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.742
Filtrar
1.
BMC Genomics ; 25(1): 968, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39407125

RESUMO

BACKGROUND: The Caridea, affiliated with Malacostraca, Decapoda, and Pleocyemata, constitute one of the most significant shrimp groups. They are widely distributed across diverse aquatic habitats worldwide, enriching their evolutionary history. In recent years, considerable attention has been focused on the classification and systematic evolution of Caridea, yet controversies still exist regarding the phylogenetic relationships among families. METHODS: Here, the complete mitochondrial genome (mitogenome) sequences of five caridean species, namely Heterocarpus sibogae, Procletes levicarina, Macrobrachium sp., Latreutes anoplonyx, and Atya gabonensis, were determined using second-generation high-throughput sequencing technology. The basic structural characteristics, nucleotide composition, amino acid content, and codon usage bias of their mitogenomes were analyzed. Selection pressure values of protein-coding genes (PCGs) in species within the families Pandalidae, Palaemonidae, and Atyidae were also computed. Phylogenetic trees based on the nucleotide and amino acid sequences of 13 PCGs from 103 caridean species were constructed, and divergence times for various families within Caridea were estimated. RESULTS: The mitogenome of these five caridean species vary in length from 15,782 to 16,420 base pairs, encoding a total of 37 or 38 genes, including 13 PCGs, 2 rRNA genes, and 22 or 23 tRNA genes. Specifically, L. anoplonyx encodes an additional tRNA gene, bringing its total gene count to 38. The base composition of the mitogenomes of these five species exhibited a higher proportion of adenine-thymine (AT) bases. Six start codons and four stop codons were identified across the five species. Analysis of amino acid content and codon usage revealed variations among the five species. Analysis of selective pressure in Pandalidae, Palaemonidae, and Atyidae showed that the Ka/Ks values of PCGs in all three families were less than 1, indicating that purifying selection is influencing on their evolution. Phylogenetic analysis revealed that each family within Caridea is monophyletic. The results of gene rearrangement and phylogenetic analysis demonstrated correlations between these two aspects. Divergence time estimation, supported by fossil records, indicated that the divergence of Caridea species occurred in the Triassic period of the Mesozoic era, with subsequent differentiation into two major lineages during the Jurassic period. CONCLUSIONS: This study explored the fundamental characteristics and phylogenetic relationships of mitogenomes within the infraorder Caridea, providing valuable insights into their classification, interspecific evolutionary patterns, and the evolutionary status of various Caridea families. The findings provide essential references for identifying shrimp species and detecting significant gene rearrangements within the Caridea infraorder.


Assuntos
Decápodes , Evolução Molecular , Genoma Mitocondrial , Filogenia , Animais , Decápodes/genética , Decápodes/classificação , Uso do Códon , RNA de Transferência/genética , Composição de Bases , Seleção Genética
2.
Plant Cell Rep ; 43(10): 249, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358565

RESUMO

KEY MESSAGE: We report the mitochondrial genome of 39 diploid potatoes and identify a candidate ORF potentially linked to cytoplasmic male sterility in potatoes. Potato (Solanum tuberosum L.) holds a critical position as the foremost non-grain food crop, playing a pivotal role in ensuring global food security. Diploid potatoes constitute a vital genetic resource pool, harboring the potential to revolutionize modern potato breeding. Nevertheless, diploid potatoes are relatively understudied, and mitochondrial DNA can provide valuable insights into key potato breeding traits such as CMS. In this study, we examine and assemble the mitochondrial genome evolution and diversity of 39 accessions of diploid potatoes using high-fidelity (HiFi) sequencing. We annotated 54 genes for all the investigated accessions, comprising 34 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. Our analyses revealed differences in repeats sequences between wild and cultivated landraces. To understand the evolution of diploid maternal lineage inheritance, we conducted phylogenetic analysis, which clearly distinguished mitochondrial from nuclear gene trees, further supporting the evidence-based of clustering between wild and cultivated landraces accessions. Our study discovers new candidate ORFs associated with CMS in potatoes, including ORF137, which is homologous to other CMS in Solanaceae. Ultimately, this work bridges the gap in mitochondrial genome research for diploid potatoes, providing a steppingstone into evolutionary studies and potato breeding.


Assuntos
Diploide , Genoma Mitocondrial , Filogenia , Solanum tuberosum , Solanum tuberosum/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Fases de Leitura Aberta/genética , DNA Mitocondrial/genética
3.
Gene ; 933: 148998, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39395729

RESUMO

Vomeronasal receptors (VRs) play a crucial role in recognizing pheromones, which are essential for social chemical communication. The male muskrat (Ondatra zibethicus) secretes musk, which contains pheromones as a reproductive signal, and the female can recognize it through the VNO to mediate social communication behavior. This study aimed to identify the genomic information of VRs (OzVRs) in the female muskrat and elucidate their physicochemical properties and evolutionary relationship. Six predominantly expressed OzVR genes were identified using the RACE technique, and a comprehensive analysis was conducted on their gene structure, subcellular distribution, functional predictions, and mRNA levels, revealed that all OzVRs were transmembrane proteins. Phylogenetic analysis clustered OzVR genes into two clades (V1Rs: OzV1R21, OzV1R81, OzV1R105; V2Rs: OzV2R33, OzV2R44, OzV2R60). Physiochemically, OzV1Rs were basic proteins, while OzV2Rs exhibited weakly acidic character. Among them, OzV1R81 and OzV2R44 were identified as hydrophobicitystable proteins, with the remainder categorized as hydrophobicity-unstable proteins. Promoters analysis revealed the involvement of transcription factors and complexes, including Ahr::Arnt, Runx1, Arnt, and TFAP2A, in regulating the expression of the OzVR genes. Conserved domain and motif analyses demonstrated a high conservation of the VRs superfamily in rodents, with many conserved domains linked to pheromone binding. Functional predictions confirmed that OzVRs were associated with pheromones detection. Finally, the expression patterns of OzVR genes in different tissues and seasons indicated that OzVRs have the highest level of expression in the vomeronasal organ, and OzV1Rs notably higher in the breeding season than that in the non-breeding season, however the expression levels of OzV2Rs were higher in the non-breeding season. This study provided insights into the phylogenetic relationships, gene structure, physicochemical properties, promoter binding sites, functions and gene expression patterns of OzVRs, offering a theoretical reference for further examination of VR gene functions and a foundation for understanding chemical signaling mechanisms in the muskrat.

4.
BMC Plant Biol ; 24(1): 955, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395971

RESUMO

BACKGROUND: The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS: In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS: In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.


Assuntos
Camellia , Genoma Mitocondrial , China , Camellia/genética , Filogenia , Edição de RNA , Genoma de Planta , Composição de Bases
5.
BMC Genom Data ; 25(1): 88, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402491

RESUMO

BACKGROUND: The bZIP transcription factor family, characterized by a bZIP domain, plays vital roles in plant stress responses and development. While this family has been extensively studied in various plant species, its specific functions in Camelina sativa (False Flax) remain underexplored. METHODS AND RESULTS: This study identified 71 bZIP transcription factors in C. sativa, classified into nine distinct groups based on phylogenetic analysis. Subcellular localization predicted a nucleus-specific expression for these bZIPs. Analysis of GRAVY scores revealed a range from 0.469 to -1.256, indicating a spectrum from hydrophobic to hydrophilic properties. Motif analysis uncovered 10 distinct motifs, with one motif being universally present in all CsbZIPs. Conserved domain analysis highlighted several domains beyond the core bZIP domain. Protein-protein interaction predictions suggested a robust network involving CsbZIPs. Moreover, promoter analysis revealed over 60 types of cis-elements, including those responsive to stress. Expression studies through RNA-seq and Real-time RT-qPCR demonstrated high expression of CsbZIPs in roots, leaves, flowers, and stems. Specifically, CsbZIP01, CsbZIP02, CsbZIP44, and CsbZIP60 were consistently up-regulated under cold, salt, and drought stresses, whereas CsbZIP34 and CsbZIP35 were down-regulated. CONCLUSION: This study presents the first comprehensive genome-wide profiling of bZIP transcription factors in Camelina sativa, providing novel insights into their roles in plant development and stress response mechanisms. By identifying and characterizing the bZIP gene family in C. sativa, this research offers new opportunities for improving stress tolerance and crop resilience through targeted genetic approaches, addressing key challenges in agriculture under changing environmental conditions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Brassicaceae/genética , Brassicaceae/metabolismo
6.
BMC Vet Res ; 20(1): 468, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39402574

RESUMO

BACKGROUND: Streptococcus agalactiae (Group B streptococcus, GBS) induces a serious infection that can harm not only aquatic life but also humans and other animals. In a fish farm in southern Egypt, Nile tilapia (Oreochromis niloticus) has developed an epidemic with clinical symptoms resembling piscine streptococcosis. RESULTS: Initial microscopic inspection of the affected fish brain and kidney indicated the presence of Gram-positive cocci. S. agalactiae was effectively isolated and identified using nucleotide homology of the 16S rRNA and species-specific PCR. The partial 16S rRNA sequence was deposited in the GenBank database at the NCBI and given the accession number MW599202. Genotyping using RAPD analysis indicated that the isolates in the present study belonged to the same genotypes and had the same origin. The challenge test, via immersion (9.2 × 107, 9.2 × 106, and 9.2 × 105 CFU/ml for 1 h) or intraperitoneal injection (4.6 × 107, 4.6 × 106, and 4.6 × 105 CFU/fish), elicited clinical symptoms resembling those of naturally infected fish with a mortality rate as high as 80%. The ability to create a biofilm as one of the pathogen virulence factors was verified. Zinc oxide nanoparticles and the ethanolic leaf extracts of nine medicinal plants demonstrated considerable antibacterial activities against the tested S. agalactiae strain with low minimum bactericidal concentrations (MBC) and minimum inhibitory concentrations (MIC). The ethanolic leaf extracts from Lantana camara and Aberia caffra showed potent antibacterial activity with MBC values of 0.24 and 0.485 mg/ml, and MIC values of 0.12 & 0.24 mg/ml, respectively. CONCLUSION: This study isolated S. agalactiae from O. niloticus mortalities in a fish farm in Assiut, Egypt. The pathogen persists in fish environments and can escape through biofilm formation, suggesting it cannot be easily eliminated. However, promising findings were obtained with in vitro control employing zinc oxide nanoparticles and medicinal plant extracts. Nevertheless further in vivo research is needed.


Assuntos
Ciclídeos , Doenças dos Peixes , Extratos Vegetais , Folhas de Planta , Infecções Estreptocócicas , Streptococcus agalactiae , Óxido de Zinco , Animais , Streptococcus agalactiae/efeitos dos fármacos , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óxido de Zinco/farmacologia , Plantas Medicinais , RNA Ribossômico 16S , Egito , Nanopartículas/química
7.
J Vet Sci ; 25(5): e72, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39363660

RESUMO

IMPORTANCE: Identifying bovine mastitis agents using molecular methods to reveal their phylogenetic relationships and antimicrobial resistance profiles is essential for developing up-to-date databases in mastitis cases that cause severe economic losses. OBJECTIVE: This study examined bacterial mastitis agents in cows with clinical and subclinical mastitis observed in various dairy cattle farms to reveal their phylogenetic relationships and antibiotic resistance properties. METHODS: Sixty-two clinical and subclinical bovine mastitis milk samples were collected from 15 dairy farms. The polymerase chain reaction (PCR) was used to amplify the 16S rRNA gene regions of the bacteria. The 16S rRNA gene sequences obtained from sequencing include the V4-V6 regions. The strains were compared using a similarity analysis method that produced phylogenetic trees using the Molecular Evolutionary Genetics Analysis 11 program. Antibiotic susceptibilities were determined using the Kirby-Bauer disk diffusion method. RESULTS: Sixty-three bacteria were isolated and identified in this study. The most isolated bacteria from all mastitis cases were Staphylococcus spp. (30.2%), Escherichia coli (25.4%), Streptococcus spp. (14.3%), and Aerococcus spp. (7.9%), respectively. The phylogenetic trees were drawn from the 16S rRNA sequences. Some of these bacteria showed resistance to different types of antibiotics at varying rates. CONCLUSIONS AND RELEVANCE: The bacteria isolated in this study originated from environmental sources. Regular cleaning of barns and proper hygiene practices are essential. Regular screenings for mastitis should be conducted in herds instead of the random or empirical use of antibiotics.


Assuntos
Antibacterianos , Mastite Bovina , Filogenia , RNA Ribossômico 16S , Animais , Mastite Bovina/microbiologia , Bovinos , Feminino , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Turquia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana/veterinária , Leite/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
8.
Zookeys ; 1213: 267-288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372276

RESUMO

The complete mitochondrial genomes of Tipula (Pterelachisus) cinereocincta mesacantha Alexander, 1934, T. (P.) legalis Alexander, 1933, T. (P.) varipennis Meigen, 1818, and T. (P.) yasumatsuana Alexander, 1954 are reported, three of them being sequenced for the first time. The mitochondrial genome lengths of the four species are 15,907 bp, 15,625 bp, 15,772 bp, and 15,735 bp, respectively. All genomes exhibit a high AT base composition, with A + T content of 76.7%, 75.0%, 77.8%, and 75.4%, respectively. The newly reported mitogenomes herein show a general similarity in overall structure, gene order, base composition, and nucleotide content to those of the previously studied species within the family Tipulidae. Phylogenetic analyses were conducted to investigate the relationships within Tipulidae, using both Maximum Likelihood and Bayesian Inference approaches. The results show that the four target species of the subgenus T. (Pterelachisus) basically form a monophyletic group within Tipulidae, clustering with species of the Tipula subgenera T. (Lunatipula), T. (Vestiplex), and T. (Formotipula); however, the genus Tipula is not monophyletic. Moreover, neither the tipulid subfamily Tipulinae nor the family Limoniidae is supported to be a monophyletic group. The monophyly of the family Tipulidae, and the sister relationship between Tipulidae and Cylindrotomidae are reconfirmed. These research findings could contribute to deep insights into the systematic and evolutionary patterns of crane flies.

9.
Front Vet Sci ; 11: 1416465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372897

RESUMO

Bovine rotavirus (BRV) is the main cause of acute gastroenteritis in calves, resulting in significant economic losses to the cattle industry worldwide. Additionally, BRV has multiple genotypes, which could enable cross-species transmission, thereby posing a significant risk to public health. However, there is a problem of multiple genotypes coexisting in BRV, and the cross-protection effect between different genotypes of rotavirus strains is not effective enough. Therefore, mastering clinical epidemic genotypes and using epidemic genotype strains for vaccine preparation is an effective means of preventing and controlling BRV. In this study, BRV strain DQ2020 in MA104 cells was identified by transmission electron microscopy (TEM), reverse transcription polymerase chain reaction (RT-PCR), and colloidal gold immunochromatographic test strips. The whole genome of BRV strain DQ2020 was sequenced and pathogenicity in suckling mice was assessed. The results showed that after 10 passages in MA104 cells, BRV strain DQ2020 induced cytopathic effects. Wheel-shaped virus particles (diameter, ~80 nm) were observed by TEM. A target band of 382 bp was detected by RT-PCR, a positive band was detected with the colloidal gold immunochromatographic test strips, and significant green fluorescence was observed by indirect immunofluorescence (IFA). The highest median tissue culture infectious dose of strain DQ2020 after 9 passages in MA104 cells was 10-4.81 viral particles/0.1 mL. Based on phylogenetic analysis of 11 gene fragments, the genotype of BRV strain DQ2020 was G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3, confirming transmission of the G6-P[1] genotype in Chinese cattle herds. Further analysis showed that the isolated strain was a reassortant of bovine (VP7, VP6, NSP3, and NSP5), human (VP4, VP1, VP2, VP3, NSP2, and NSP4), and ovine (NSP1) rotaviruses. BRV strain DQ2020 caused damage to the intestinal villi of suckling mice and diarrhea, confirming pathogenicity. In summary, this study identified a reassortant strain of bovine, human, and ovine rotavirus that is pathogenic to lactating mice, and conducted whole genome sequence analysis, providing valuable insights for the genetic evolution of the virus and the development of vaccines.

10.
Trop Anim Health Prod ; 56(8): 328, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373945

RESUMO

Ovine herpesvirus-2 (OvHV-2) is the causative agent of malignant catarrhal fever (MCF), a serious and often fatal disease that affects cattle and other ruminants. This study aimed to investigate the molecular epidemiology and genetic diversity of OvHV-2 strains circulating in sheep and cattle populations in the Jammu and Kashmir region of India. Screening of 150 sheep and 57 cattle blood samples revealed the presence of the OvHV-2 polymerase (pol) gene in 8.6% of sheep, 10% of apparently healthy cattle, and 29.7% of cattle exhibiting MCF-like symptoms. The full-length glycoprotein B (gB) gene (2800 bp) and an 875 bp internal fragment were successfully amplified, cloned, and sequenced from pol-positive samples. Comparative sequence analysis of the deduced gB amino acid sequences identified seven substitutions at positions 278, 341, 390, 440, 468, 539, and 566 compared to reference strains. Phylogenetic analysis based on the gB nucleotide sequences clustered the OvHV-2 strains from this study within the Indian clade, distinct from strains reported in the UK and US. These findings provide insights into the genetic diversity of OvHV-2 strains circulating in Jammu and Kashmir, with the identified mutations potentially influencing virus-host interactions. Further investigations into the functional implications of these mutations are warranted to understand their role in viral pathogenesis and tropism.


Assuntos
Variação Genética , Filogenia , Doenças dos Ovinos , Animais , Bovinos , Ovinos , Índia/epidemiologia , Doenças dos Ovinos/virologia , Doenças dos Ovinos/epidemiologia , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Gammaherpesvirinae/genética , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/classificação , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/epidemiologia , Febre Catarral Maligna/virologia , Febre Catarral Maligna/epidemiologia , Doenças Assintomáticas , Análise de Sequência de DNA/veterinária , Epidemiologia Molecular , DNA Viral/genética
11.
BMC Genomics ; 25(1): 929, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367299

RESUMO

BACKGROUND: Lavandula angustifolia holds importance as an aromatic plant with extensive applications spanning the fragrance, perfume, cosmetics, aromatherapy, and spa sectors. Beyond its aesthetic and sensory applications, this plant offers medicinal benefits as a natural herbal remedy and finds use in household cleaning products. While extensive genomic data, inclusive of plastid and nuclear genomes, are available for this species, researchers have yet to characterize its mitochondrial genome. This gap in knowledge hampers deeper understanding of the genome organization and its evolutionary significance. RESULTS: Through the course of this study, we successfully assembled and annotated the mitochondrial genome of L. angustifolia, marking a first in this domain. This assembled genome encompasses 61 genes, which comprise 34 protein-coding genes, 24 transfer RNA genes, and three ribosomal RNA genes. We identified a chloroplast sequence insertion into the mitogenome, which spans a length of 10,645 bp, accounting for 2.94% of the mitogenome size. Within these inserted sequences, there are seven intact tRNA genes (trnH-GUG, trnW-CCA, trnD-GUC, trnS-GGA, trnN-GUU, trnT-GGU, trnP-UGG) and four complete protein-coding genes (psbA, rps15, petL, petG) of chloroplast derivation. Additional discoveries include 88 microsatellites, 15 tandem repeats, 74 palindromic repeats, and 87 forward long repeats. An RNA editing analysis highlighted an elevated count of editing sites in the cytochrome c oxidase genes, notably ccmB with 34 editing sites, ccmFN with 32, and ccmC with 29. All protein-coding genes showed evidence of cytidine-to-uracil conversion. A phylogenetic analysis, utilizing common protein-coding genes from 23 Lamiales species, yielded a tree with consistent topology, supported by high confidence values. CONCLUSIONS: Analysis of the current mitogenome resource revealed its typical circular genome structure. Notably, sequences originally from the chloroplast genome were found within the mitogenome, pointing to the occurrence of horizontal gene transfer between organelles. This assembled mitogenome stands as a valuable resource for subsequent studies on mitogenome structures, their evolution, and molecular biology.


Assuntos
Genoma Mitocondrial , Lavandula , Filogenia , Lavandula/genética , RNA de Transferência/genética , Organelas/genética , Transferência Genética Horizontal , Edição de RNA , Anotação de Sequência Molecular , Genoma de Planta , Evolução Molecular
12.
Mitochondrial DNA B Resour ; 9(10): 1350-1354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39377036

RESUMO

Tabebuia rosea is a world-renowned woody plant with colorful flowers in full bloom. In addition to its high ornamental value, it also has ecological and medicinal value. In this study, the complete circular chloroplast genome of T. rosea was reconstructed and annotated using Illumina sequencing. The chloroplast genome was 158,919 bp in size with GC content of 38.21%, including a large single-copy region of 85,823 bp, a small single-copy region of 12,816 bp, and a pair of inverted repeats of 30,140 bp. It encoded 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Based on current available chloroplast genome sequences, the phylogenetic analysis indicated that T. rosea was clustered with T. nodosa and H. chrysanthus. This study provided insights into the evolutionary relationships among different species of Bignoniaceae.

13.
Arch Virol ; 169(11): 218, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39379747

RESUMO

In this study, a novel positive-sense single-stranded RNA (+ ssRNA) mycovirus, Alternaria tenuissima mitovirus 1 (AtMV1), was identified in Alternaria tenuissima strain YQ-2-1, a phytopathogenic fungus causing leaf blight on muskmelon. The genome of AtMV1 is a single RNA molecule that is 3013 nt in length with an A + U content of 66.58% and contains a single open reading frame (ORF) using the fungal mitochondrial genetic code. The ORF was predicted to encode a 313-amino-acid RNA-dependent RNA polymerase (RdRp) with a molecular mass of 35.48 kDa, which contains six conserved motifs with the highly conserved GDD tripeptide in motif IV. The 5' and 3' untranslated regions were predicted to fold into stem-loop and panhandle secondary structures. The results of a BLASTp search revealed that the amino acid (aa) sequence of RdRp of AtMV1 shared the highest sequence similarity (51.04% identity) with that of Sichuan mito-like virus 30, a member of the genus Duamitovirus within the family Mitoviridae. Phylogenetic analysis based on the aa sequence of the RdRp suggested that AtMV1 is a novel member of the genus Duamitovirus. To our knowledge, this is the first report of the complete genome sequence of a new mitovirus infecting A. tenuissima.


Assuntos
Alternaria , Micovírus , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , RNA Viral , Alternaria/virologia , Alternaria/genética , Micovírus/genética , Micovírus/isolamento & purificação , Micovírus/classificação , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Sequenciamento Completo do Genoma , Proteínas Virais/genética , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Sequência de Aminoácidos , Sequência de Bases
14.
Mitochondrial DNA B Resour ; 9(10): 1374-1378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381361

RESUMO

Garcinia esculenta Y. H. Li. 1981 (Clusiaceae) is an endemic tree species in China, primarily found in western and northwestern Yunnan Province. In this research, the complete chloroplast genome of G. esculenta was sequenced using the Illumina NovaSeq6000 platform. The result showed that the length of the complete chloroplast genome was 155,853 bp, which was composed of a large single-copy region (LSC) of 84,534 bp, a small single-copy region (SSC) of 17,175 bp, and a pair of inverted repeat (IR) regions of 27,072 bp. The overall GC content was 36.1%. The complete chloroplast genome encompassed 128 genes, comprising 83 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences of 22 species revealed that G. esculenta is most closely related to G. oblongifolia.

15.
Mitochondrial DNA B Resour ; 9(10): 1389-1393, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381363

RESUMO

The genus Calyptothecium, currently comprising ca. 30 species worldwide, is the largest genus within the family Pterobryaceae. However, a comprehensive taxonomic revision of this genus is lacking. Calyptothecium philippinense Broth. 1899, a moss species widely found in the tropical regions of Asia, is characterized by the unique rugose leaves and large auriculate leaf bases. In this study, we sequenced the complete chloroplast genome (CPG) of C. philippinense using the Illumina NovaSeq 6000 platform. The length of the CPG of C. philippinense was determined to be 124,513 bp, with an AT content of 74%. The CPG of C. philippinense exhibited a standard quadripartite structure, consisting of one small single-copy (SSC) region (18,541 bp), one large single-copy region (LSC) (87,222 bp), and two inverted repeat (IR) regions (9375 bp each). A total of 126 genes from the CPG of C. philippinense were annotated, including 82 protein-coding genes, eight ribosomal RNA genes, and 36 transfer RNA genes. Phylogenetic analysis based on the CPGs of 25 bryophyte taxa revealed that the three Pterobryaceae species C. philippinense, Calyptothecium hookeri (Mitt.) Broth. and Pterobryopsis orientalis (Müll. Hal.) M. Fleisch. formed a robust clade. The findings could facilitate more accurate classification and help elucidate evolutionary relationships within Calyptothecium.

16.
Mitochondrial DNA B Resour ; 9(10): 1370-1373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381365

RESUMO

Fuchsia standishii J. Harrison, 1840, a perennial shrub, is renowned for its vividly colored and uniquely shaped blooms, which have an extended flowering season. Commonly cultivated as an ornamental potted plant, it is utilized in traditional Chinese medicine. In this study, we successfully sequenced and assembled the complete chloroplast genome of F. standishii using high-throughput Illumina sequencing technology. The assembled chloroplast genome displays a typical quadripartite structure, with a total length of 156,391 bp. It consists of a pair of inverted repeat regions (IRs), each measuring 25,069 bp, separated by a large single-copy region (LSC) of 87,754 bp and a small single-copy region (SSC) of 18,499 bp. The overall GC content of the genome is 37.60%. The genome includes a total of 129 genes, comprising 84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis of 17 complete chloroplast genomes revealed that F. standishii forms a monophyletic group with the entire Circaea. This study provides a molecular foundation for future phylogenetic research on Fuchsia.

17.
Mitochondrial DNA B Resour ; 9(10): 1384-1388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39381366

RESUMO

Baeckea frutescens Linaeus 1753, as a traditional folk medicine in South East Asia, possesses sesquiterpenes, phloroglucinols, chromones, and essential oil, and is utilized for traditional Chinese medicinal purposes. The genetic diversity of the plant must be better understood, considering its significance. The complete chloroplast (cp) genome of B. frutescens was sequenced and assembled by using Illumina paired-end data, marking a significant advancement toward comprehending its genetic composition. The complete cp genome is 158,939 bp in length and contains 128 genes, consisting of 83 protein-coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. Phylogenetic analyses indicated that B. frutescens and other the 13 were clustered to the family of Myrtaceae. These findings are crucial for the conservation and utilization of this important plant species. Additionally, they underscore the potential for future research on the evolution and preservation of B. frutescens, which could be advantageous in pharmaceutical applications.

18.
Sci Rep ; 14(1): 23236, 2024 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369094

RESUMO

Fungi in the genus Trichoderma are widespread in the environment, mainly in soils. They are used in agriculture because of their mycoparasitic potential; Trichoderma have the ability to increase plant health and provide protection against phytopathogens, making them desirable plant symbionts. We isolated, identified, and characterized Trichoderma from different regions of Saudi Arabia and evaluated the ability of Trichoderma to promote plant growth. Morphological and molecular characterization, along with phylogenetic studies, were utilized to differentiate between Trichoderma species isolated from soil samples in the Abha and Riyadh regions, Saudi Arabia. Then, plant growth-promoting traits of the isolated Trichoderma species were assessed. Eight Trichoderma isolates were characterized via morphological and molecular analysis; six (Trichoderma koningiopsis, Trichoderma lixii, Trichoderma koningii, Trichoderma harzianum, Trichoderma brevicompactum, and Trichoderma velutinum) were from Abha and two (T. lixii and T. harzianum) were from Riyadh. The isolated Trichoderma strains belonged to three different clades (Clade 1: Harzianum, Clade 2: Brevicompactum, and Clade 3: Viride). The Trichoderma isolates varied in plant growth-promoting traits. Seeds treated with most isolates exhibited a high percentage of germination, except seeds treated with the T3-T. koningii isolate. 100% germination was reported for seeds treated with the T4-T. harzianum and T6-T. brevicompactum isolates, while seeds treated with the T1-T. koniniopsis and T5-T. lixii isolates showed 91.1% and 90.9% germination, respectively. Seeds treated with the T8-T. velutinum, T2-T. lixii, and T7-T. harzianum isolates had germination rates of 84.1%, 82.2%, and 72.7%, respectively. The Trichoderma isolate T5-T. lixii stimulated tomato plant growth the most, followed by T7-T. harzianum, T8-T. velutinum, T4-T. harzianum, T1-T. koniniopsis, T2-T. lixii, and T6-T. brevicompactum; the least effective was T3-T. koningii. A maximum fresh weight of 669.33 mg was observed for the T5-T. lixii-treated plants. The Abha region had a higher diversity of Trichoderma species than the Riyadh region, and most isolated Trichoderma spp. promoted tomato growth.


Assuntos
Filogenia , Microbiologia do Solo , Trichoderma , Arábia Saudita , Trichoderma/genética , Trichoderma/isolamento & purificação , Trichoderma/crescimento & desenvolvimento , Trichoderma/fisiologia , Desenvolvimento Vegetal , Sementes/microbiologia , Sementes/crescimento & desenvolvimento
19.
BMC Infect Dis ; 24(1): 1093, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358703

RESUMO

BACKGROUND: Influenza outbreaks have occurred frequently these years, especially in the summer of 2022 when the number of influenza cases in southern provinces of China increased abnormally. However, the exact evidence of the driving factors involved in the prodrome period is unclear, posing great difficulties for early and accurate prediction in practical work. METHODS: In order to avoid the serious interference of strict prevention and control measures on the analysis of influenza influencing factors during the COVID-19 epidemic period, only the impact of meteorological and air quality factors on influenza A (H3N2) in Xiamen during the non coronavirus disease 2019 (COVID-19) period (2013/01/01-202/01/24) was analyzed using the distribution lag non-linear model. Phylogenetic analysis of influenza A (H3N2) during 2013-2022 was also performed. Influenza A (H3N2) was predicted through a random forest and long short-term memory (RF-LSTM) model via actual and forecasted meteorological and influenza A (H3N2) values. RESULTS: Twenty nine thousand four hundred thirty five influenza cases were reported in 2022, accounting for 58.54% of the total cases during 2013-2022. A (H3N2) dominated the 2022 summer epidemic season, accounting for 95.60%. The influenza cases in the summer of 2022 accounted for 83.72% of the year and 49.02% of all influenza reported from 2013 to 2022. Among them, the A (H3N2) cases in the summer of 2022 accounted for 83.90% of all A (H3N2) reported from 2013 to 2022. Daily precipitation(20-50 mm), relative humidity (70-78%), low (≤ 3 h) and high (≥ 7 h) sunshine duration, air temperature (≤ 21 °C) and O3 concentration (≤ 30 µg/m3, > 85 µg/m3) had significant cumulative effects on influenza A (H3N2) during the non-COVID-19 period. The daily values of PRE, RHU, SSD, and TEM in the prodrome period of the abnormal influenza A (H3N2) epidemic (19-22 weeks) in the summer of 2022 were significantly different from the average values of the same period from 2013 to 2019 (P < 0.05). The minimum RHU value was 70.5%, the lowest TEM value was 16.0 °C, and there was no sunlight exposure for 9 consecutive days. The highest O3 concentration reached 164 µg/m3. The range of these factors were consistent with the risk factor range of A (H3N2). The common influenza A (H3N2) variant genotype in 2022 was 3 C.2a1b.2a.1a. It was more accurate to predict influenza A (H3N2) with meteorological forecast values than with actual values only. CONCLUSION: The extreme weather conditions of sustained low temperature and wet rain may have been important driving factors for the abnormal influenza A (H3N2) epidemic. A low vaccination rate, new mutated strains, and insufficient immune barriers formed by natural infections may have exacerbated this epidemic. Meteorological forecast values can aid in the early prediction of influenza outbreaks. This study can help relevant departments prepare for influenza outbreaks during extreme weather, provide a scientific basis for prevention strategies and risk warnings, better adapt to climate change, and improve public health.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , China/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Estações do Ano , Filogenia , Epidemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
20.
Mitochondrial DNA B Resour ; 9(10): 1322-1326, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359376

RESUMO

Buxus sinica var. parvifolia is a shrub or small arbor of the Buxaceae family, rich in various medicinal alkaloids and of great horticultural value. In this study, we sequenced, assembled, and annotated the complete chloroplast genome of B. sinica var. parvifolia for the first time. The length of the chloroplast genome is 158,995 bp with 38.1% overall GC content. It includes a large single-copy (LSC) region of 88,140 bp, a small single-copy (SSC) region of 17,761 bp, and two inverted repeat regions of 26,547 bp. Additionally, 132 functional genes in the genome are identified, including 87 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. Phylogenetic analysis showed that B. sinica var. parvifolia is closely related to Buxus microphylla. The complete chloroplast genome sequence of B. sinica var. parvifolia and its phylogenetic analysis provides useful genomic information for the further study of B. sinica var. parvifolia and other Buxus species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA