Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 276(Pt 1): 133813, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996889

RESUMO

In recent years, a variety of three-dimensional structure prediction tools, including AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold, have been employed in the investigation of intrinsically disordered proteins. However, a comprehensive validation of these tools specifically for intrinsically disordered proteins has yet to be conducted. In this study, we utilize AlphaFold2, AlphaFold3, I-TASSER, C-I-TASSER, Phyre2, ESMFold, and RoseTTAFold to predict the structure of a model intrinsically disordered α-synuclein protein. Additionally, extensive replica exchange molecular dynamics simulations of the intrinsically disordered protein are conducted. The resulting structures from both structure prediction tools and replica exchange molecular dynamics simulations are analyzed for radius of gyration, secondary and tertiary structure properties, as well as Cα and Hα chemical shift values. A comparison of the obtained results with experimental data reveals that replica exchange molecular dynamics simulations provide results in excellent agreement with experimental observations. However, none of the structure prediction tools utilized in this study can fully capture the structural characteristics of the model intrinsically disordered protein. This study shows that a cluster of ensembles are required for intrinsically disordered proteins. Artificial-intelligence based structure prediction tools such as AlphaFold3 and C-I-TASSER could benefit from stochastic sampling or Monte Carlo simulations for generating an ensemble of structures for intrinsically disordered proteins.


Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , alfa-Sinucleína , alfa-Sinucleína/química , Proteínas Intrinsicamente Desordenadas/química , Conformação Proteica , Humanos
2.
Proteins ; 92(5): 637-648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38146101

RESUMO

Bacteriophages are the natural predators of bacteria and are available abundantly everywhere in nature. Lytic phages can specifically infect their bacterial host (through attachment to the receptor) and use their host replication machinery to replicate rapidly, a feature that enables them to kill a disease-causing bacteria. Hence, phage attachment to the host bacteria is the first important step of the infection process. It is reported in this study that the receptor could be an LPS which is responsible for the attachment of the Sfk20 phage to its host (Shigella flexneri 2a). Phage Sfk20 bacteriolytic activity was examined for preliminary optimization of phage titer. The phage Sfk20 viability at different saline conditions was conducted. The LC-MS/MS technique used here for detecting and identifying 40 Sfk20 phage proteins helped us to get an initial understanding of the structural landscape of phage Sfk20. From the identified proteins, six structurally significant proteins were selected for structure prediction using two neural network systems: AlphaFold2 and ESMFold, and one homology modeling software: Phyre2. Later the performance of these modeling systems was compared using various metrics. We conclude from the available and generated information that AlphaFold2 and Phyre2 perform better than ESMFold for predicting Sfk20 phage protein structures.


Assuntos
Bacteriófagos , Shigella , Bacteriófagos/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bactérias
3.
Protein Expr Purif ; 182: 105834, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33516827

RESUMO

Hydrophobins are a class of small cysteine rich surface active proteins produced exclusively by filamentous fungi. It forms a nano layer in the cell-water interface, thereby protecting the emerging fungal hyphae from surrounding water. Even though hydrophobins have similar functions in fungi, they share less sequence similarity. In the current study, we made a comparative study of the hydrophobin produced by the mushroom Pleurotus floridanus (PfH). Mushroom P. floridanus was cultured in PD broth. The hydrophobin was purified by foam fractionation and characterized in terms of molecular weight, solubility and glycosylation. In the RP-HPLC analysis, the hydrophobin eluted at a retention time of 45.56 min. The molecular weight of the PfH was found to be 13.52 kDa by MALDI-TOF MS and the LC-MS/MS showed no similar sequence in MASCOT database. The hydrophobin gene of P. floridanus was amplified using custom-designed primers and the BLAST analysis showed 80% sequence similarity with the Vmh2-1 gene of Pleurotus ostreatus. The sequence was translated into protein using ExPASy, secondary and tertiary structure predictions were carried out using Jpred4 and Phyre2. The tertiary structure showed 91.5% similarity with the HYD1 hydrophobin of Schizophyllum commune. A comparative study of PfH with Vmh2-1 and HYD1 was performed using bioinformatics tools. Hydrophobic cluster analysis revealed that three of these proteins have uniformity in terms of amphiphilic and non-amphiphilic α-helices, whereas PfH has a unique proline clustering. Physicochemical analysis by ProtParam revealed that PfH shares similar properties with HYD1 and Vmh2-1, which can be correlated with its function.


Assuntos
Proteínas Fúngicas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Pleurotus/química , Pleurotus/genética , Pleurotus/metabolismo
4.
Curr Top Med Chem ; 19(31): 2831-2841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31755393

RESUMO

ST8Sia II (STX) is a highly homologous mammalian polysialyltransferase (polyST), which is a validated tumor-target in the treatment of cancer metastasis reliant on tumor cell polysialylation. PolyST catalyzes the synthesis of α2,8-polysialic acid (polySia) glycans by carrying out the activated CMP-Neu5Ac (Sia) to N- and O-linked oligosaccharide chains on acceptor glycoproteins. In this review article, we summarized the recent studies about intrinsic correlation of two polybasic domains, Polysialyltransferase domain (PSTD) and Polybasic region (PBR) within ST8Sia II molecule, and suggested that the critical amino acid residues within the PSTD and PBR motifs of ST8Sia II for polysialylation of Neural cell adhesion molecules (NCAM) are related to ST8Sia II activity. In addition, the conformational changes of the PSTD domain due to point mutations in the PBR or PSTD domain verified an intramolecular interaction between the PBR and the PSTD. These findings have been incorporated into Zhou's NCAM polysialylation/cell migration model, which will provide new perspectives on drug research and development related to the tumor-target ST8Sia II.


Assuntos
Inibidores Enzimáticos/farmacologia , Sialiltransferases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Humanos , Mutação Puntual , Domínios Proteicos , Sialiltransferases/genética , Sialiltransferases/metabolismo
5.
Curr Top Med Chem ; 19(25): 2271-2282, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648641

RESUMO

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


Assuntos
Movimento Celular , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Animais , Humanos , Moléculas de Adesão de Célula Nervosa/química , Ácidos Siálicos/química
6.
Am J Transl Res ; 11(6): 3689-3697, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31312380

RESUMO

B-cell lymphoma/leukaemia 11A (BCL11A) is a modulator of foetal-to-adult globin switching and is involved in brain development and normal lymphopoiesis. The three-dimensional structure of BCL11A and its structural domains had not yet been completely determined; hence, this study aimed to elucidate the structural domains of BCL11A. Molecular modelling and dynamics simulation studies were conducted using in silico tools with the templates selected based on Basic Local Alignment Search Tool (BLAST) searches of the Protein Data Bank (PDB). Ten protein models were generated using the MODELLER software, and the best model was selected according to the Discrete Optimised Protein Energy (DOPE) score and validated using the RAMPAGE server by evaluation of the Ramachandran plot. More than 93% of the amino acid residues of the best model of BCL11A were found to be in the favoured and allowed regions. The best model was validated using a 100-ns time span molecular dynamics simulation. The root-mean-square deviation, root-mean-square fluctuation, and radius of gyration values were found to explain the stability of the best BCL11A protein molecular model generated in the study. The validated best model of the BCL11A protein may be useful for effective modulator studies on foetal-to-adult globin switching and related research.

7.
Life (Basel) ; 9(2)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060233

RESUMO

Pathways of standard genetic code evolution remain conserved and apparent, particularly upon analysis of aminoacyl-tRNA synthetase (aaRS) lineages. Despite having incompatible active site folds, class I and class II aaRS are homologs by sequence. Specifically, structural class IA aaRS enzymes derive from class IIA aaRS enzymes by in-frame extension of the protein N-terminus and by an alternate fold nucleated by the N-terminal extension. The divergence of aaRS enzymes in the class I and class II clades was analyzed using the Phyre2 protein fold recognition server. The class I aaRS radiated from the class IA enzymes, and the class II aaRS radiated from the class IIA enzymes. The radiations of aaRS enzymes bolster the coevolution theory for evolution of the amino acids, tRNAomes, the genetic code, and aaRS enzymes and support a tRNA anticodon-centric perspective. We posit that second- and third-position tRNA anticodon sequence preference (C>(U~G)>A) powerfully selected the sectoring pathway for the code. GlyRS-IIA appears to have been the primordial aaRS from which all aaRS enzymes evolved, and glycine appears to have been the primordial amino acid around which the genetic code evolved.

8.
J Mol Biol ; 431(11): 2197-2212, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30995449

RESUMO

Knowledge of protein structure can be used to predict the phenotypic consequence of a missense variant. Since structural coverage of the human proteome can be roughly tripled to over 50% of the residues if homology-predicted structures are included in addition to experimentally determined coordinates, it is important to assess the reliability of using predicted models when analyzing missense variants. Accordingly, we assess whether a missense variant is structurally damaging by using experimental and predicted structures. We considered 606 experimental structures and show that 40% of the 1965 disease-associated missense variants analyzed have a structurally damaging change in the mutant structure. Only 11% of the 2134 neutral variants are structurally damaging. Importantly, similar results are obtained when 1052 structures predicted using Phyre2 algorithm were used, even when the model shares low (<40%) sequence identity to the template. Thus, structure-based analysis of the effects of missense variants can be effectively applied to homology models. Our in-house pipeline, Missense3D, for structurally assessing missense variants was made available at http://www.sbg.bio.ic.ac.uk/~missense3d.


Assuntos
Mutação de Sentido Incorreto , Proteínas/genética , Algoritmos , Frequência do Gene , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas/química
9.
Gene ; 534(2): 229-35, 2014 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-24211386

RESUMO

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is increasingly considered as an important functional food material because of its rich nutraceutical compounds. Reserve starch is the major component of tartary buckwheat seed. However, the gene sequences and the molecular mechanism of tartary buckwheat starch synthesis are unknown so far. In this study, the complete genomic sequence and full-size cDNA coding tartary buckwheat granule-bound starch synthase I (FtGBSSI), which is responsible for amylose synthesis, were isolated and analyzed. The genomic sequence of the FtGBSSI contained 3947 nucleotides and was composed of 14 exons and 13 introns. The cDNA coding sequence of FtGBSSI shared 63.3%-75.1% identities with those of dicots and 56.6%-57.5% identities with monocots (Poaceae). In deduced amino acid sequence of FtGBSSI, eight motifs conserved among plant starch synthases were identified. A cleavage at the site IVC↓G of FtGBSSI protein produces the chloroplast transit sequence of 78 amino acids and the mature protein of 527 amino acids. The FtGBSSI mature protein showed an identity of 73.4%-77.8% with dicot plants, and 67.6%-70.4% with monocot plants (Poaceae). The mature protein was composed of 20 α-helixes and 16 ß-strands, and folds into two main domains, N- and C-terminal domains. The critical residues which are involved in ADP and sugar binding were predicted. These results will be useful to modulate starch composition of buckwheat kernels with the aim to produce novel improved varieties in future breeding programs.


Assuntos
Fagopyrum/genética , Sintase do Amido/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , DNA Complementar/genética , Fagopyrum/enzimologia , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Amido/genética
10.
Virology ; 446(1-2): 293-302, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24074593

RESUMO

Bacteriophage ATP-based packaging motors translocate DNA into a pre-formed prohead through a dodecameric portal ring channel to high density. We investigated portal-terminase docking interactions at specifically localized residues within a terminase-interaction region (aa279-316) in the phage T4 portal protein gp20 equated to the clip domain of the SPP1 portal crystal structure by 3D modeling. Within this region, three residues allowed A to C mutations whereas three others did not, consistent with informatics analyses showing the tolerated residues are not strongly conserved evolutionarily. About 7.5nm was calculated by FCS-FRET studies employing maleimide Alexa488 dye labeled A316C proheads and gp17 CT-ReAsH supporting previous work docking the C-terminal end of the T4 terminase (gp17) closer to the N-terminal GFP-labeled portal (gp20) than the N-terminal end of the terminase. Such a terminase-portal orientation fits better to a proposed "DNA crunching" compression packaging motor and to portal determined DNA headful cutting.


Assuntos
Bacteriófago T4/enzimologia , Bacteriófago T4/fisiologia , Proteínas do Capsídeo/metabolismo , Empacotamento do DNA , Endodesoxirribonucleases/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Biologia Computacional , Análise Mutacional de DNA , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA