Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2322321121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38728226

RESUMO

Multispecies bacterial populations often inhabit confined and densely packed environments where spatial competition determines the ecological diversity of the community. However, the role of mechanical interactions in shaping the ecology is still poorly understood. Here, we study a model system consisting of two populations of nonmotile Escherichia coli bacteria competing within open, monolayer microchannels. The competitive dynamics is observed to be biphasic: After seeding, either one strain rapidly fixates or both strains orient into spatially stratified, stable communities. We find that mechanical interactions with other cells and local spatial constraints influence the resulting community ecology in unexpected ways, severely limiting the overall diversity of the communities while simultaneously allowing for the establishment of stable, heterogeneous populations of bacteria displaying disparate growth rates. Surprisingly, the populations have a high probability of coexisting even when one strain has a significant growth advantage. A more coccus morphology is shown to provide a selective advantage, but agent-based simulations indicate this is due to hydrodynamic and adhesion effects within the microchannel and not from breaking of the nematic ordering. Our observations are qualitatively reproduced by a simple Pólya urn model, which suggests the generality of our findings for confined population dynamics and highlights the importance of early colonization conditions on the resulting diversity and ecology of bacterial communities. These results provide fundamental insights into the determinants of community diversity in dense confined ecosystems where spatial exclusion is central to competition as in organized biofilms or intestinal crypts.


Assuntos
Escherichia coli , Escherichia coli/fisiologia , Modelos Biológicos , Biodiversidade , Ecossistema
2.
Elife ; 102021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34866571

RESUMO

Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.


Assuntos
Antibiose/fisiologia , Saccharomyces cerevisiae/fisiologia , Modelos Teóricos
3.
Semin Cell Dev Biol ; 120: 22-31, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253437

RESUMO

During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.


Assuntos
Blastocisto/fisiologia , Animais , Humanos , Camundongos
4.
Cell Syst ; 12(9): 924-944.e2, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34214468

RESUMO

Despite abundant measurements of bacterial growth rate, cell size, and protein content, we lack a rigorous understanding of what sets the scale of these quantities and when protein abundances should (or should not) depend on growth rate. Here, we estimate the basic requirements and physical constraints on steady-state growth by considering key processes in cellular physiology across a collection of Escherichia coli proteomic data covering ≈4,000 proteins and 36 growth rates. Our analysis suggests that cells are predominantly tuned for the task of cell doubling across a continuum of growth rates; specific processes do not limit growth rate or dictate cell size. We present a model of proteomic regulation as a function of nutrient supply that reconciles observed interdependences between protein synthesis, cell size, and growth rate and propose that a theoretical inability to parallelize ribosomal synthesis places a firm limit on the achievable growth rate. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Escherichia coli , Proteômica , Bactérias/metabolismo , Tamanho Celular , Escherichia coli/fisiologia , Biossíntese de Proteínas
5.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33722344

RESUMO

Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using Bacillus subtilis, a model system for bacterial multicellularity. We discover that, upon exposure to a spatial gradient of kanamycin, swarming bacteria activate matrix genes and transit to biofilms. The initial stage of this transition is underpinned by a stress-induced multilayer formation, emerging from a biophysical mechanism reminiscent of motility-induced phase separation (MIPS). The physical nature of the process suggests that stressors which suppress the expansion of swarms would induce biofilm formation. Indeed, a simple physical barrier also induces a swarm-to-biofilm transition. Based on the gained insight, we propose a strategy of antibiotic treatment to inhibit the transition from swarms to biofilms by targeting the localized phase transition.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Canamicina/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Bacillus subtilis/metabolismo , Contagem de Células/métodos , Movimento Celular/efeitos dos fármacos , Modelos Biológicos , Estresse Fisiológico
6.
Proc Natl Acad Sci U S A ; 114(20): 5177-5182, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461510

RESUMO

The Golgi apparatus is a membrane-bounded organelle with the characteristic shape of a series of stacked flat cisternae. During mitosis in mammalian cells, the Golgi apparatus is once fragmented into small vesicles and then reassembled to form the characteristic shape again in each daughter cell. The mechanism and details of the reassembly process remain elusive. Here, by the physical simulation of a coarse-grained membrane model, we reconstructed the three-dimensional morphological dynamics of the Golgi reassembly process. Considering the stability of the interphase Golgi shape, we introduce two hypothetical mechanisms-the Golgi rim stabilizer protein and curvature-dependent restriction on membrane fusion-into the general biomembrane model. We show that the characteristic Golgi shape is spontaneously organized from the assembly of vesicles by proper tuning of the two additional mechanisms, i.e., the Golgi reassembly process is modeled as self-organization. We also demonstrate that the fine Golgi shape forms via a balance of three reaction speeds: vesicle aggregation, membrane fusion, and shape relaxation. Moreover, the membrane fusion activity decreases thickness and the number of stacked cisternae of the emerging shapes.


Assuntos
Complexo de Golgi/patologia , Complexo de Golgi/fisiologia , Animais , Simulação por Computador/estatística & dados numéricos , Complexo de Golgi/metabolismo , Humanos , Fusão de Membrana/fisiologia , Mitose , Modelos Biológicos , Estabilidade Proteica
7.
Cell Mol Bioeng ; 9(4): 496-508, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28083075

RESUMO

Thrombus growth at the site of vascular injury is mediated by the sequential events of platelet recruitment, activation and aggregation concomitant with the initiation of the coagulation cascade, resulting in local thrombin generation and fibrin formation. While the biorheology of a localized thrombus formation has been well studied, it is unclear whether local sites of thrombin generation propagate platelet activation within the bloodstream. In order to study the physical biology of platelet activation downstream of sites of thrombus formation, we developed a platform to measure platelet activation and microaggregate formation in the bloodstream. Our results show that thrombi formed on collagen and tissue factor promote activation and aggregation of platelets in the bloodstream in a convection-dependent manner. Pharmacological inhibition of the coagulation factors (F) X, XI or thrombin dramatically reduced the degree of distal platelet activation and microaggregate formation in the bloodstream without affecting the degree of local platelet deposition and aggregation on a surface of immobilized collagen. Herein we describe the development and an example of the utility of a platform to study platelet activation and microaggregate formation in the bloodstream (convection-limited regime) relative to the local site of thrombus formation.

8.
Cell Mol Bioeng ; 8(3): 517-525, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417394

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer worldwide. Although there are numerous treatment options for HNSCC, such as surgery, cytotoxic chemotherapy, molecularly targeted systemic therapeutics, and radiotherapy, overall survival has not significantly improved in the last 50 years. This suggests a need for a better understanding of how these cancer cells respond to current treatments in order to improve treatment paradigms. Ionizing radiation (IR) promotes cancer cell death through the creation of cytotoxic DNA lesions, including single strand breaks, base damage, crosslinks, and double strand breaks (DSBs). As unrepaired DSBs are the most cytotoxic DNA lesion, defining the downstream cellular responses to DSBs are critical for understanding the mechanisms of tumor cell responses to IR. The effects of experimental IR on HNSCC cells beyond DNA damage in vitro are ill-defined. Here we combined label-free, quantitative phase and fluorescent microscopy to define the effects of IR on the dry mass and volume of the HNSCC cell line, UM-SCC-22A. We quantified nuclear and cytoplasmic subcellular density alterations resulting from 8 Gy X-ray IR and correlated these signatures with DNA and γ-H2AX expression patterns. This study utilizes a synergistic imaging approach to study both biophysical and biochemical alterations in cells following radiation damage and will aid in future understanding of cellular responses to radiation therapy.

9.
Biochem Mol Biol Educ ; 41(6): 402-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24259335

RESUMO

Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships.


Assuntos
Bioquímica/educação , Biologia Molecular/educação , Simulação de Dinâmica Molecular , Proteínas/química , Cristalografia por Raios X , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Proteínas/genética , Software , Relação Estrutura-Atividade , Estudantes , Ensino/métodos , Universidades
10.
Development ; 140(20): 4125-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24086077

RESUMO

In July 2013, the diverse fields of biology, physics and mathematics converged to discuss 'The Physical Biology of Stem Cells', the subject of the third annual symposium of the Cambridge Stem Cell Institute, UK. Two clear themes resonated throughout the meeting: the new insights gained from advances in the acquisition and interpretation of quantitative data; and the importance of 'thinking outside the nucleus' to consider physical influences on cell fate.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Linhagem da Célula , Morfogênese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA