Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 316
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124133

RESUMO

Over the past few decades, increasing populations of cervid species in the Baltic region have reduced the quality and vitality of cultivated Norway spruce (Picea abies (L.) Karst.) stands. This study evaluated the effect of bark stripping on the volume growth of spruce trees in Latvia. Data collection took place in two forest stands. In each stand, 20 Norway spruce trees were sampled, 10 with visible bark damage scars and 10 control trees. Stem discs were collected from control trees at specified heights (0 m, 0.5 m, 1 m, 1.3 m, and 2 m, and then at one-metre intervals up to the top) and from damaged trees at additional specific points relative to the damage. Each disc was sanded and scanned; tree ring widths were measured in 16 radial directions using WinDendro 2012a software. Annual volume growth reconstruction was performed for each tree. Changes in relative volume growth were analysed in interaction with scar parameters, tree type (damaged/control), and pre-damage volume using linear regression models. The significance of parameter interactions was assessed using analysis of variance (ANOVA). Pairwise comparisons of estimated marginal means (EMMs) were conducted using Tukey's HSD post hoc test. No significant effect of bark stripping on the total stem volume increment was detected. However, the length of bark stripping scars had a significant impact on relative volume growth in the lower parts of the stems. These findings underscore the importance of further research examining a broader spectrum of cervid damage intensity and the effects of repeated damage on tree survival and growth.

2.
Plant J ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990506

RESUMO

The osmotic resistance mechanism has been extensively studied in whole plants or plant tissues. However, little is known about it in embryogenic tissue (ET) which is widely used in plant-based biotechnological systems. Suberin, a cell wall aliphatic and aromatic heteropolymer, plays a critical role in plant cells against osmosis stress. The suberin regulatory biosynthesis has rarely been studied in gymnosperms. Here, PaMYB11, a subgroup 11 R2R3-MYB transcription factor, plays a key role in the osmotic resistance of Norway spruce (Picea abies) ETs during cryoprotectant pretreatment. Thus, RNA-seq, histological, and analytical chemical analyses are performed on the stable transformations of PaMYB11-OE and PaMYB11-SRDX in Norway spruce ETs. DAP-seq, Y1H, and LUC are further combined to explore the PaMYB11 targets. Activation of PaMYB11 is necessary and sufficient for suberin lamellae deposition on Norway spruce embryogenic cell walls, which plays a decisive role in ET survival under osmotic stress. Transcriptome analysis shows that PaMYB11 enhances suberin lamellae monomer synthesis by promoting very long-chain fatty acid (VLCFA) synthesis. PaPOP, PaADH1, and PaTET8L, the first two (PaADH1 and PaPOP, included) involved in VLCFA synthesis, are proved to be the direct targets of PaMYB11. Our study identified a novel osmotic response directed by PaMYB11 in Norway spruce ET, which provides a new understanding of the resistance mechanism against osmosis in gymnosperms.

3.
Ecology ; : e4377, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046431

RESUMO

Animals representing a wide range of taxonomic groups are known to select specific food combinations to achieve a nutritionally balanced diet. The nutrient balancing hypothesis suggests that, when given the opportunity, animals select foods to achieve a particular target nutrient balance, and that balancing occurs between meals and between days. For wild ruminants who inhabit landscapes dominated by human land use, nutritionally imbalanced diets can result from ingesting agricultural crops rich in starch and sugar (nonstructural carbohydrates [NCs]), which can be provided to them by people as supplementary feeds. Here, we test the nutrient balancing hypothesis by assessing potential effects that the ingestion of such crops by Alces alces (moose) may have on forage intake. We predicted that moose compensate for an imbalanced intake of excess NC by selecting tree forage with macro-nutritional content better suited for their rumen microbiome during wintertime. We applied DNA metabarcoding to identify plants in fecal and rumen content from the same moose during winter in Sweden. We found that the concentration of NC-rich crops in feces predicted the presence of Picea abies (Norway spruce) in rumen samples. The finding is consistent with the prediction that moose use tree forage as a nutritionally complementary resource to balance their intake of NC-rich foods, and that they ingested P. abies in particular (normally a forage rarely eaten by moose) because it was the most readily available tree. Our finding sheds new light on the foraging behavior of a model species in herbivore ecology, and on how habitat alterations by humans may change the behavior of wildlife.

4.
New Phytol ; 243(2): 662-673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769735

RESUMO

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Assuntos
Florestas , Caules de Planta , Estações do Ano , Luz Solar , Árvores , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Árvores/fisiologia , Europa (Continente) , Caules de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Fotossíntese/efeitos da radiação
5.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731619

RESUMO

This study aims to investigate the vegetative buds from Picea abies (spruce), naturally found in a central region of Romania, through a comprehensive analysis of the chemical composition to identify bioactive compounds responsible for pharmacological properties. Using HPLC/derivatization technique of GC-MS and quantitative spectrophotometric assays, the phenolic profile, and main components of an ethanolic extract from the buds were investigated. The essential oil was characterized by GC-MS. Moreover, the antioxidant activity with the DPPH method, and the antimicrobial activity were tested. Heavy metal detection was performed by graphite furnace atomic absorption spectrometry. The main components of the alcoholic extract were astragalin, quercetin, kaempferol, shikimic acid, and quinic acid. A total content of 25.32 ± 2.65 mg gallic acid equivalent per gram of dry plant (mg GAE/g DW) and of 10.54 ± 0.083 mg rutin equivalents/g of dry plant (mg RE/g DW) were found. The essential oil had D-limonene, α-cadinol, δ-cadinene, 13-epimanool, and δ-3-carene as predominant components. The spruce vegetative buds exhibited significant antioxidant activity (IC50 of 53 µg/mL) and antimicrobial effects against Staphylococcus aureus. Furthermore, concentrations of heavy metals Pb and Cd were below detection limits, suggesting that the material was free from potentially harmful contaminants. The results confirmed the potential of this indigenous species to be used as a source of compounds with pharmacological utilities.


Assuntos
Anti-Infecciosos , Antioxidantes , Óleos Voláteis , Compostos Fitoquímicos , Picea , Extratos Vegetais , Picea/química , Antioxidantes/farmacologia , Antioxidantes/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Testes de Sensibilidade Microbiana , Cromatografia Gasosa-Espectrometria de Massas , Romênia , Fenóis/análise , Fenóis/farmacologia , Fenóis/química
6.
Methods Mol Biol ; 2787: 95-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656484

RESUMO

Our method describes how to collect forest tree root tips in the field, to store them for transfer to the lab, to pretreat root tips in order to arrest cells in metaphase, fix root tips to preserve specific morphological organizations, to stain fixed root tips by Feulgen's Reaction in order to increase contrast, and to prepare the root meristem for analyzing mitotic stages and chromosomal aberrations via light microscopy. We further describe how to classify chromosomal abnormalities and quantify them via aberration indices.


Assuntos
Meristema , Árvores , Meristema/genética , Árvores/genética , Aberrações Cromossômicas , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise Citogenética/métodos
7.
J Fungi (Basel) ; 10(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38667934

RESUMO

Sarcosoma globosum (Pezizales, Ascomycota) is a rare and endangered fungus, and it is believed to be extinct in most central European countries. Known records of S. globosum in Lithuania reveal that it is situated on the south-western edge of a shrinking geographical distribution range in Europe. An assessment of the species' current habitat conditions and threats could enhance and provide new knowledge and guidelines to facilitate the efficient conservation of this threatened fungus and its habitats. The main aim of this study was to analyse the habitats and environmental conditions of S. globosum in Lithuania. We examined the diversity of habitats, various soil and tree stand characteristics, forest management activities, and natural disturbances in all 28 known fungus localities. S. globosum habitats in Lithuania are restricted to coniferous forests with the presence of Picea abies; the species was observed in boreo-nemoral bilberry western spruce taiga (the European Nature Information System habitat type T3F14), continental tall-herb western spruce taiga (T3F44), and native fir, spruce, larch, and cedar plantations (T3N1). An analysis of forest stand age structures in Lithuanian S. globosum localities revealed a rather large proportion of young Norway spruce stands of cultural origin (25.6% of study plots were assigned to age classes from 21 to 50 years); nevertheless, the majority of fungus growth sites were situated in older forests. Various natural and anthropogenic disturbances that threaten S. globosum habitats were assessed.

8.
J Exp Bot ; 75(13): 3973-3992, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38572950

RESUMO

The photosynthetic acclimation of boreal evergreen conifers is controlled by regulatory and photoprotective mechanisms that allow conifers to cope with extreme environmental changes. However, the underlying dynamics of photosystem II (PSII) and photosystem I (PSI) remain unresolved. Here, we investigated the dynamics of PSII and PSI during the spring recovery of photosynthesis in Pinus sylvestris and Picea abies using a combination of chlorophyll a fluorescence, P700 difference absorbance measurements, and quantification of key thylakoid protein abundances. In particular, we derived a new set of PSI quantum yield equations, correcting for the effects of PSI photoinhibition. Using the corrected equations, we found that the seasonal dynamics of PSII and PSI photochemical yields remained largely in balance, despite substantial seasonal changes in the stoichiometry of PSII and PSI core complexes driven by PSI photoinhibition. Similarly, the previously reported seasonal up-regulation of cyclic electron flow was no longer evident, after accounting for PSI photoinhibition. Overall, our results emphasize the importance of considering the dynamics of PSII and PSI to elucidate the seasonal acclimation of photosynthesis in overwintering evergreens. Beyond the scope of conifers, our corrected PSI quantum yields expand the toolkit for future studies aimed at elucidating the dynamic regulation of PSI.


Assuntos
Aclimatação , Fotossíntese , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema II , Picea , Pinus sylvestris , Estações do Ano , Complexo de Proteína do Fotossistema I/metabolismo , Picea/fisiologia , Picea/metabolismo , Pinus sylvestris/fisiologia , Pinus sylvestris/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia
9.
Plant Biol (Stuttg) ; 26(4): 508-520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38568928

RESUMO

The analysis of genetic variation underlying local adaptation in natural populations, together with the response to different external stimuli, is currently a hot topic in forest sciences, with the aim of identifying genetic markers controlling key phenotypic traits of interest for their inclusion in restoration and breeding programs. In Europe, one of the main tree species is Norway spruce (Picea abies (L.) H.Karst.). Using the MassARRAY® platform, 568 trees from North Rhine-Westphalia (Germany) were genotyped with 94 single nucleotide polymorphisms (SNPs) related to circadian and growth rhythms, and to stress response. The association analysis of the selected markers with health status and elevation was performed using three different methods, and those identified by at least two of these were considered as high confidence associated SNPs. While just five markers showed a weak association with health condition, 32 SNPs were correlated with elevation, six of which were considered as high confidence associated SNPs, as indicated by at least two different association methods. Among these genes, thioredoxin and pseudo response regulator 1 (PRR1) are involved in redox homeostasis and ROS detoxification, APETALA2-like 3 (AP2L3), a transcription factor, is involved in seasonal apical growth, and a RPS2-like is a disease resistance gene. The function of some of these genes in controlling light-dependent reactions and metabolic processes suggests signatures of adaptation to local photoperiod and the synchronization of the circadian rhythm. This work provides new insights into the genetic basis of local adaptation over a shallow elevation gradient in Norway spruce.


Assuntos
Ritmo Circadiano , Homeostase , Oxirredução , Picea , Polimorfismo de Nucleotídeo Único , Picea/genética , Picea/fisiologia , Ritmo Circadiano/genética , Polimorfismo de Nucleotídeo Único/genética , Homeostase/genética , Genótipo , Genes de Plantas/genética , Alemanha , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marcadores Genéticos
10.
Environ Pollut ; 350: 124012, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643933

RESUMO

Tree rings have been reliably used as an environmental proxy over the past decades for environmental reconstructions, simulations and forecasting. In our study, we investigated whether tree-ring chronologies are impacted by pollution. We chose sites in the Krusné hory and the Krkonose Mountains in the Czech Republic which have a known history of pollution. We sampled Norway spruce (Picea abies [L.] Karst) in both ranges and compared their chronologies. We found no significant difference in the overall radial growth in the chronologies from both regions. However, we observed an increased heterogeneity in the growth of trees from the 1970s till the 1990s. Coherently, a severe reduction in tree growth from the late 1970s and a recovery towards the early 1990s was evident. We collected and analysed soil samples for pH and exchangeable element concentrations. All seven sampling sites' soils were strongly acidic (pHCaCl2 = 3.3 ± 0.4). The average soil base saturation at Krusné hory was higher than at Krkonose (39% versus 12%), likely due to more intensive liming. Further, we compared these chronologies to other sites in Europe. Analysing 89 sites, we found that most (9 out of 14) of the sites with significantly reduced radial tree growth were located within the former 'Black Triangle', an area which was subjected to heavy industrialisation and pollution from the 1960s to the 1990s. Atmospheric sulphur deposition was found to negatively affect radial tree-growth, while limited quantities of oxidised nitrogen appeared to have a positive effect. Our results are consistent with previous research, indicating that atmospheric SO2 pollution and subsequent acid fog and rime have led to a reduction in annual radial tree growth across the Black Triangle.


Assuntos
Monitoramento Ambiental , Poluição Ambiental , Picea , Árvores , Picea/crescimento & desenvolvimento , Picea/efeitos dos fármacos , República Tcheca , Árvores/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Europa (Continente)
11.
New Phytol ; 242(3): 1000-1017, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433329

RESUMO

Drought affects the complex interactions between Norway spruce, the bark beetle Ips typographus and associated microorganisms. We investigated the interplay of tree water status, defense and carbohydrate reserves with the incidence of bark beetle attack and infection of associated fungi in mature spruce trees. We installed roofs to induce a 2-yr moderate drought in a managed spruce stand to examine a maximum of 10 roof and 10 control trees for resin flow (RF), predawn twig water potentials, terpene, phenolic and carbohydrate bark concentrations, and bark beetle borings in field bioassays before and after inoculation with Endoconidiophora polonica and Grosmannia penicillata. Drought-stressed trees showed more attacks and significantly longer fungal lesions than controls, but maintained terpene resin defenses at predrought levels. Reduced RF and lower mono- and diterpene, but not phenolic concentrations were linked with increased host selection. Bark beetle attack and fungi stimulated chemical defenses, yet G. penicillata reduced phenolic and carbohydrate contents. Chemical defenses did not decrease under mild, prolonged drought in our simulated small-scale biotic infestations. However, during natural mass attacks, reductions in carbon fixation under drought, in combination with fungal consumption of carbohydrates, may deplete tree defenses and facilitate colonization by I. typographus.


Assuntos
Besouros , Picea , Gorgulhos , Animais , Secas , Picea/microbiologia , Casca de Planta/química , Doenças das Plantas/microbiologia , Terpenos , Fenóis , Noruega , Água/análise , Carboidratos/análise
12.
Int J Biol Macromol ; 264(Pt 1): 130289, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378107

RESUMO

Using 7 % KOH, the polysaccharide PAK has been isolated from the coniferous greens of Norway spruce. PAK was found to contain predominantly arabinoglucuronoxylan, xyloglucan and arabinan, but also pectic polysaccharides, glucomannan and arabinogalactan proteins (AGPs), as determined by 1D/2D NMR analysis. It was found that fractionation of PAK on DEAE-cellulose resulted in simultaneous elution of pectins, arabinoglucuronoxylans and AGPs. It was evident that the content of 4-OMe-α-D-GlcpA and xylose, 1,4-ß-D-GlcpA, and T-ß-D-GlcpA increased with an increase in NaCl concentration. However, 1,4-α-D-GalpA content was almost independent of NaCl concentration, indicating unchanged pectic polysaccharide concentration. Interestingly, pectins extracted with 0.1-0.3 M NaCl solutions were richer in rhamnogalacturonan-I (RG-I) than those extracted with water and 0.01 M NaCl. Conclusion: The content of RG-I, AGPs and arabinoglucuronoxylan rises with rising NaCl concentration. An intense signal indicating an intermolecular linkage between the xylan and RG-I domains, i.e. that part of the arabinoglucuronoxylan is covalently bound to RG-I, is observed in the HMBC spectra of the polysaccharides obtained. The discovery here of a new relationship between rhamnogalacturonan I and xylan contradicts the prevailing cell wall model.


Assuntos
Abies , Mucoproteínas , Picea , Xilanos , Abies/metabolismo , Cloreto de Sódio , Polissacarídeos/química , Pectinas/química , Proteínas de Plantas
13.
Glob Chang Biol ; 30(1): e17146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273515

RESUMO

Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.


Assuntos
Fagus , Picea , Pinus sylvestris , Quercus , Árvores , Florestas , Picea/fisiologia , Noruega , Mudança Climática
14.
Vet Dermatol ; 35(3): 325-336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38169122

RESUMO

BACKGROUND: Norway spruce (Picea abies) resin-based products are used in human medicine. A resin-based otic rinse also could be useful in supportive care of canine otitis externa (COE), yet information on its antimicrobial effect against canine pathogens or ototoxicity is lacking. OBJECTIVES: To investigate the antimicrobial properties and ototoxicity of a commercial resin-based otic product. MATERIALS AND METHODS: Antimicrobial effect was evaluated using a standardised challenge test on Staphylococcus pseudintermedius, Corynebacterium auriscanis, Pseudomonas aeruginosa, Escherichia coli, Malassezia pachydermatis, and Streptococcus halichoeri strains to measure reduction in growth after 24 h exposure to the product. Effect on cell morphology was investigated by exposing S. pseudintermedius, C. auriscanis, P. aeruginosa and M. pachydermatis to the product in 20% and 100% (v/v) concentrations for 6, 24 and 48 h, and evaluating cells by transmission (TEM) and scanning (SEM) electron microscopy. An in vitro microbial kill-rate assay also was performed. Auditory brain stem response test, clinical evaluation and postmortem histological evaluation of ear canals were undertaken on experimental guinea pigs treated with the test product or saline controls. RESULTS: The product showed >log 5 growth reduction for all strains in the challenge test. TEM and SEM images showed clear changes in the cells' inner structures and deterioration of cells, and 100% (v/v) test product exposure induced microbial killing in 1-2 h. Ototoxicity was not detected in guinea pigs. CONCLUSIONS AND CLINICAL RELEVANCE: The product may be an option in supportive care of COE because of antimicrobial effects and lack of ototoxic properties in a guinea pig model.


Assuntos
Doenças do Cão , Picea , Animais , Cães , Projetos Piloto , Doenças do Cão/tratamento farmacológico , Otite Externa/veterinária , Otite Externa/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Corynebacterium/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Malassezia/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Ototoxicidade , Cobaias , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Masculino , Testes de Sensibilidade Microbiana , Feminino
15.
Tree Physiol ; 44(1)2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-37756632

RESUMO

Continuous cover forestry (CCF) has gained interest as an alternative to even-aged management particularly on drained peatland forests. However, relatively little is known about the physiological response of suppressed trees when larger trees are removed as a part of CCF practices. Consequently, studies concentrating on process-level modeling of the response of trees to selection harvesting are also rare. Here, we compared, modeled and measured harvest response of previously suppressed Norway spruce (Picea abies) trees to a selection harvest. We quantified the harvest response by collecting Norway spruce tree-ring samples in a drained peatland forest site and measuring the change in stable carbon and oxygen isotopic ratios of wood formed during 2010-20, including five post-harvest years. The measured isotopic ratios were compared with ecosystem-level process model predictions for ${\kern0em }^{13}$C discrimination and ${\kern0em }^{18}$O leaf water enrichment. We found that the model predicted similar but lower harvest response than the measurements. Furthermore, accounting for mesophyll conductance was important for capturing the variation in ${\kern0em }^{13}$C discrimination. In addition, we performed sensitivity analysis on the model, which suggests that the modeled ${\kern0em }^{13}$C discrimination is sensitive to parameters related to CO2 transport through stomata to the mesophyll.


Assuntos
Carbono , Picea , Picea/fisiologia , Ecossistema , Isótopos de Carbono/análise , Isótopos de Oxigênio/análise , Florestas , Árvores , Noruega
16.
Int J Biol Macromol ; 254(Pt 3): 128000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949276

RESUMO

Polymers containing arabinoglucuronoxylan, fucogalactoxyglucan, pectin and arabinogalactan proteins were obtained from PAK isolated from Norway spruce with 7 % KOH. The pectin core of PAK-I2-F-1 and PAK-I2-F-2 was dominated by RG-I, as treatment with 1,4-α-D-polygalacturonase resulted in almost complete removal of homogalacturonan. Interestingly, the above has not affected the co-fractionation of arabinoglucuronoxylan (AGX), arabinogalactan proteins and rhamnogalacturonan I (RG-I). Since pectin was mainly represented by RG-I, we concluded that xylan is specifically associated with RG-I. Correlations in the HMBC spectrum demonstrate intermolecular interactions between the α-L-Rhap (RG-I) and the Xyl (xylan), indicating a covalently bound AGX:RG-I complex via the Xyl-(1→4)-Rha bond: …→2)-[(2,4-ß-D-Xylp)-(1→4)]-[(α-D-GalpA-(1→2)]-α-L-Rhap-(1→4)-α-D-GalpA-(1→…. In PAK-H1-1-F-1 and PAK-H1-1-F-2, parts of RG-I and xylan were removed by enzymolysis. Part of the xylan was probably attached to the above-mentioned RG-I blocks. The removal of part of RG-I, xylan and the disappearance of the signal in the HMBC spectrum indicating the bond between RG-I and xylan confirms that part of the arabinoglucuronoxylan is covalently bound to RG-I. The observed glycosidic linkage contradicts the dominant PCW model in which pectin and hemicellulose polysaccharide networks are considered as independent components. It can be concluded that alkali-soluble xylan from Norway spruce was detected both in the free state and covalently bound to pectin.


Assuntos
Abies , Picea , Xilanos/química , Abies/metabolismo , Polissacarídeos/química , Pectinas/química
17.
Plant Dis ; 108(1): 139-148, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37578357

RESUMO

Gray mold, caused by Botrytis spp., is a serious problem in Norway spruce seedling production in forest nurseries. From 2013 to 2019, 125 isolates of Botrytis were obtained from eight forest nurseries in Norway: 53 from Norway spruce seedlings, 16 from indoor air, 52 from indoor surfaces, and four from weeds growing close to seedlings. The majority of isolates were identified as B. cinerea, and over 60% of these were characterized as Botrytis group S. B. pseudocinerea isolates were obtained along with isolates with DNA sequence similarities to B. prunorum. Fungicide resistance was assessed with a mycelial growth assay, and resistance was found for the following: boscalid (8.8%), fenhexamid (33.6%), fludioxonil (17.6%), pyraclostrobin (36.0%), pyrimethanil (13.6%), and thiophanate-methyl (50.4%). Many isolates (38.4%) were resistant to two to six different fungicides. A selection of isolates was analyzed for the presence of known resistance-conferring mutations in the cytb, erg27, mrr1, sdhB, and tubA genes, and mutations leading to G143A, F412S, ΔL497, H272R, and E198A/F200Y were detected, respectively. Detection of fungicide resistance in Botrytis from Norway spruce and forest nursery facilities reinforces the necessity of employing resistance management strategies to improve control and delay development of fungicide resistance in the gray mold pathogens.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Farmacorresistência Fúngica/genética , Botrytis , Doenças das Plantas/prevenção & controle , Mutação
18.
Front Microbiol ; 14: 1280485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111643

RESUMO

Mutualistic ectomycorrhizal symbiosis requires the exchange of signals even before direct contact of the partners. Volatiles, and specifically volatile terpenoids, can be detected at a distance and may trigger downstream signaling and reprogramming of metabolic responses. The late-stage ectomycorrhizal fungus Tricholoma vaccinum shows high host specificity with its main host spruce, Picea abies, while rarely associations can be found with pine, Pinus sylvestris. Hence, a comparison of the host and the low-compatibility host's responses can untangle differences in early signaling during mycorrhiza formation. We investigated sesquiterpenes and identified different patterns of phytohormone responses with spruce and pine. To test the specific role of volatiles, trees were exposed to the complete volatilome of the fungus versus volatiles present when terpene synthases were inhibited by rosuvastatin. The pleiotropic response in spruce included three non-identified products, a pyridine derivative as well as two diterpenes. In pine, other terpenoids responded to the fungal signal. Using exposure to the fungal volatilome with or without terpene synthesis inhibited, we could find a molecular explanation for the longer time needed to establish the low-compatibility interaction.

19.
BMC Microbiol ; 23(1): 350, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978432

RESUMO

The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.


Assuntos
Microbiota , Micobioma , Picea , Humanos , Picea/microbiologia , Secas , Noruega , Microbiota/genética , Árvores/microbiologia , Água
20.
Mol Ecol ; 32(19): 5288-5304, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37622583

RESUMO

Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.


Assuntos
Abies , Picea , Humanos , Picea/genética , Seleção Genética , Noruega , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA