Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067737

RESUMO

Rural communities in Mexico and other countries with limited economic resources require a low-cost measurement system for the piezometric level and temperature of groundwater for their sustainable management, since anthropogenic action (pumping extractions), natural recharge and climate change phenomena affect the behavior of piezometric levels in the aquifer and its sustainability is at risk. Decrease in the piezometric level under a balanced level promotes salt intrusion from ocean water to the aquifer, salinizing and deteriorating the water quality for agriculture and other activities; and a decrease in water level under the pumps or well drilling depth could deprive communities of water. Water temperature monitoring is essential to determine electric conductivity and dissolved salt content in groundwater. Using IoT technology, a device was developed that monitors both variables inside the well, and the ambient temperature and atmospheric pressure outside the well. The measurements are made in real time, with sampling every second and sending data to a dedicated server every 15 min so that the visualization can be accessed through a device with Internet access. The time series of the variables measured inside and outside the well were obtained over a period of three months in the rural community of Agua Blanca, Guasave, Sinaloa, Mexico. Through these records, a progressive temporary drawdown of the piezometric level is observed, as well as the frequency of pumping. This low-cost IoT system shows potential use in hydrological processes of interest such as the separation of regional and local flow, drawdown rates and recognition of geohydrological parameters.

2.
Sci Total Environ ; 859(Pt 1): 160272, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36403836

RESUMO

In hydrogeological research, the systematic and periodic measurement of the piezometric level is fundamental to assess aquifer storage, identify recharge and discharge areas, define flow directions and to infer the balance between inputs and withdrawals. Furthermore, knowledge of this variable and its fluctuations is essential for the efficient management and protection of groundwater resources. In this work, a novel methodology is proposed for the remote acquisition of piezometric information from traditional large-diameter wells, using drone-borne LiDAR observations. The workflow developed consists of different stages, from flight planning and parameter setting, to point cloud generation, data processing and validation and its statistical treatment to extract piezometric information. This methodology has been applied in a small coastal aquifer with numerous wells that have served as monitoring points. The UAV-LiDAR has enabled the straightforward obtention of measurements of the piezometric level with very high vertical accuracies (RMSE of 5 cm) with minimum and maximum residuals of -8.7 and 7.9 cm respectively. Likewise, the method has shown vertical accuracies 3 times better than those inferred from the official DTM of best resolution available in Spain, which is usually used in hydrogeological works. Since the technique provides absolute values of the piezometric level, it eliminates the need for laborious levelling work prior to hydrogeological campaigns. This method has proved to be an effective alternative/complementary technique to traditional measurements of the piezometric level, allowing to monitor extensive or inaccessible areas over short periods of time and to potentially reduce gaps in hydrogeological databases.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Monitoramento Ambiental/métodos , Poços de Água , Espanha
3.
J Environ Manage ; 318: 115580, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759962

RESUMO

In the recent years, the coastal aquifer of Jijel plain (North Algeria) located on the south of the Mediterranean Sea was utilized for cities growth and agricultural development of the region. Consequently, overexploitation and seawater intrusion were identified as major risks to the groundwater resource. In this work, a new approach integrating groundwater vulnerability method and numerical model for predicting the actual and future seawater is proposed. The groundwater vulnerability assessment has been performed by applying the GALDIT method using GIS and the MODFLOW model was used to simulate the actual and future groundwater level of the aquifer over the period 2020-2050. Three scenarios were simulated under water demand and climate conditions (drought, recharge) to obtain the changes in the groundwater level variation. The results of the GALDIT model application to the actual conditions (year 2020) showed that the high class of groundwater vulnerability is located in the coastal fringe and the terminal stretches of wadis where the seawater intrusion limit is located at a distance range between 840 and 1420 m from the shoreline. However, the results for predicting future groundwater vulnerability showed that the scenario which proposed the artificial recharge basins, although predicting a worrying situation compared to the actual condition, has the best figure of the groundwater vulnerability assessment and seawater intrusion despite the other two scenarios. In this case the limit in the year 2050 is located between distances of 850-1640 m from the shoreline with a forward speed of seawater intrusion of 1-8 m/year, compared to the reference year 2020. This showed that groundwater level variation and recharge were the key factors in controlling groundwater vulnerability to seawater intrusion. The presented new approach can be used to mapping the actual and future groundwater vulnerability assessment to seawater intrusion and groundwater resources management in any coastal areas worldwide.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Monitoramento Ambiental/métodos , Previsões , Modelos Teóricos , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA