Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010145

RESUMO

BACKGROUND: Structural variation (SV) detection methods using third-generation sequencing data are widely employed, yet accurately detecting SVs remains challenging. Different methods often yield inconsistent results for certain SV types, complicating tool selection and revealing biases in detection. RESULTS: This study comprehensively evaluates 53 SV detection pipelines using simulated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus Sequencing) and Nanopore (ONT) platforms. We assess their performance in detecting various sizes and types of SVs, breakpoint biases, and genotyping accuracy with various sequencing depths. Notably, pipelines such as Minimap2-cuteSV2, NGMLR-SVIM, PBMM2-pbsv, Winnowmap-Sniffles2, and Winnowmap-SVision exhibit comparatively higher recall and precision. Our findings also show that combining multiple pipelines with the same aligner, like pbmm2 or winnowmap, can significantly enhance performance. The individual pipelines' detailed ranking and performance metrics can be viewed in a dynamic table: http://pmglab.top/SVPipelinesRanking . CONCLUSIONS: This study comprehensively characterizes the strengths and weaknesses of numerous pipelines, providing valuable insights that can improve SV detection in third-generation sequencing data and inform SV annotation and function prediction.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Estrutural do Genoma , Software , Análise de Sequência de DNA/métodos
2.
Genome Biol ; 20(1): 237, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727126

RESUMO

BACKGROUND: Structural variations (SVs) account for about 1% of the differences among human genomes and play a significant role in phenotypic variation and disease susceptibility. The emerging nanopore sequencing technology can generate long sequence reads and can potentially provide accurate SV identification. However, the tools for aligning long-read data and detecting SVs have not been thoroughly evaluated. RESULTS: Using four nanopore datasets, including both empirical and simulated reads, we evaluate four alignment tools and three SV detection tools. We also evaluate the impact of sequencing depth on SV detection. Finally, we develop a machine learning approach to integrate call sets from multiple pipelines. Overall SV callers' performance varies depending on the SV types. For an initial data assessment, we recommend using aligner minimap2 in combination with SV caller Sniffles because of their speed and relatively balanced performance. For detailed analysis, we recommend incorporating information from multiple call sets to improve the SV call performance. CONCLUSIONS: We present a workflow for evaluating aligners and SV callers for nanopore sequencing data and approaches for integrating multiple call sets. Our results indicate that additional optimizations are needed to improve SV detection accuracy and sensitivity, and an integrated call set can provide enhanced performance. The nanopore technology is improving, and the sequencing community is likely to grow accordingly. In turn, better benchmark call sets will be available to more accurately assess the performance of available tools and facilitate further tool development.


Assuntos
Variação Estrutural do Genoma , Genômica/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA , Benchmarking , Humanos , Nanoporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA