Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Front Neural Circuits ; 18: 1414452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978957

RESUMO

As an evolutionarily ancient sense, olfaction is key to learning where to find food, shelter, mates, and important landmarks in an animal's environment. Brain circuitry linking odor and navigation appears to be a well conserved multi-region system among mammals; the anterior olfactory nucleus, piriform cortex, entorhinal cortex, and hippocampus each represent different aspects of olfactory and spatial information. We review recent advances in our understanding of the neural circuits underlying odor-place associations, highlighting key choices of behavioral task design and neural circuit manipulations for investigating learning and memory.


Assuntos
Odorantes , Animais , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Humanos , Percepção Olfatória/fisiologia , Percepção Espacial/fisiologia , Encéfalo/fisiologia
2.
Neuron ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38964330

RESUMO

Neuronal activity plays a critical role in the maturation of circuits that propagate sensory information into the brain. How widely does early activity regulate circuit maturation across the developing brain? Here, we used targeted recombination in active populations (TRAP) to perform a brain-wide survey for prenatally active neurons in mice and identified the piriform cortex as an abundantly TRAPed region. Whole-cell recordings in neonatal slices revealed preferential interconnectivity within embryonically TRAPed piriform neurons and their enhanced synaptic connectivity with other piriform neurons. In vivo Neuropixels recordings in neonates demonstrated that embryonically TRAPed piriform neurons exhibit broad functional connectivity within piriform and lead spontaneous synchronized population activity during a transient neonatal period, when recurrent connectivity is strengthening. Selectively activating or silencing these neurons in neonates enhanced or suppressed recurrent synaptic strength, respectively. Thus, embryonically TRAPed piriform neurons represent an interconnected hub-like population whose activity promotes recurrent connectivity in early development.

3.
Exp Neurol ; 379: 114884, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992824

RESUMO

The potassium released in the extracellular space during neuronal activity is rapidly removed by glia and neurons to maintain tissue homeostasis. Oligodendrocyte-derived myelin axonal coating contributes to potassium buffering and is therefore crucial to control brain excitability. We studied activity-dependent extracellular potassium ([K+]o) changes in the piriform cortex (PC), a region that features highly segregated bundles of myelinated and unmyelinated fibers. Four-aminopyridine (4AP; 50 µM) treatment or patterned high-frequency stimulations (hfST) were utilized to generate [K+]o changes measured with potassium-sensitive electrodes in the myelinated lateral olfactory tract (LOT), in the unmyelinated PC layer I and in the myelinated deep PC layers in the ex vivo isolated guinea-pig brain. Seizure-like events induced by 4AP are initiated by the abrupt [K+]o rise in the layer I formed by unmyelinated fibers (Uva et al., 2017). Larger [K+]o shifts occurred in unmyelinated layers compared to the myelinated LOT. LOT hfST that mimicks pre-seizure discharges also generated higher [K+]o changes in unmyelinated PC layer I than in LOT and deep PC layers. The treatment with the Kir4.1 potassium channel blocker BaCl2 (100 µM) enhanced the [K+]o changes generated by hfST in myelinated structures. Our data show that activity-dependent [K+]o changes are intrinsically different in myelinated vs unmyelinated cortical regions. The larger [K+]o shifts generated in unmyelinated structures may represent a vehicle for seizure generation.

4.
Brain Commun ; 6(4): fcae179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015765

RESUMO

The piriform cortex is recognized as highly epileptogenic in rodents, yet its electrophysiological role in human epilepsy remains understudied. Recent surgical outcomes have suggested potential benefits in resecting the piriform cortex for cases of medial temporal lobe epilepsy. However, little is known about its electrophysiological activity in human epilepsy. This case-series study aimed to explore the electrophysiological role of the piriform cortex within the epileptogenic network among patients with suspected temporal lobe epilepsy. Participants were recruited from Emory University Hospital or Children's Healthcare of Atlanta, with non-lesional frontotemporal or temporal lobe hypotheses, undergoing stereoelectroencephalographic studies. Specifically, focus was placed on patients with one or more electrode contacts in the piriform cortex. Primary objectives included determining piriform cortex involvement within the electrophysiologically defined epileptogenic network and assessing the effects of electrical stimulation. Twenty-two patients were included in the study. Notably, only one patient exhibited piriform cortex involvement at seizure onset, associated with an olfactory aura. Two patients showed early piriform cortex involvement, while others displayed late or no involvement. Electrical stimulation of the piriform cortex induced after-discharges in three patients and replicated a habitual seizure in one. These findings present a contrast to surgical outcome studies, suggesting that the piriform cortex may not typically play a significant role in the epileptogenic network among patients with non-lesional temporal lobe epilepsy.

5.
Acta Pharmacol Sin ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862816

RESUMO

Kv1.3 belongs to the voltage-gated potassium (Kv) channel family, which is widely expressed in the central nervous system and associated with a variety of neuropsychiatric disorders. Kv1.3 is highly expressed in the olfactory bulb and piriform cortex and involved in the process of odor perception and nutrient metabolism in animals. Previous studies have explored the function of Kv1.3 in olfactory bulb, while the role of Kv1.3 in piriform cortex was less known. In this study, we investigated the neuronal changes of piriform cortex and feeding behavior after smell stimulation, thus revealing a link between the olfactory sensation and body weight in Kv1.3 KO mice. Coronal slices including the anterior piriform cortex were prepared, whole-cell recording and Ca2+ imaging of pyramidal neurons were conducted. We showed that the firing frequency evoked by depolarization pulses and Ca2+ influx evoked by high K+ solution were significantly increased in pyramidal neurons of Kv1.3 knockout (KO) mice compared to WT mice. Western blotting and immunofluorescence analyses revealed that the downstream signaling molecules CaMKII and PKCα were activated in piriform cortex of Kv1.3 KO mice. Pyramidal neurons in Kv1.3 KO mice exhibited significantly reduced paired-pulse ratio and increased presynaptic Cav2.1 expression, proving that the presynaptic vesicle release might be elevated by Ca2+ influx. Using Golgi staining, we found significantly increased dendritic spine density of pyramidal neurons in Kv1.3 KO mice, supporting the stronger postsynaptic responses in these neurons. In olfactory recognition and feeding behavior tests, we showed that Kv1.3 conditional knockout or cannula injection of 5-(4-phenoxybutoxy) psoralen, a Kv1.3 channel blocker, in piriform cortex both elevated the olfactory recognition index and altered the feeding behavior in mice. In summary, Kv1.3 is a key molecule in regulating neuronal activity of the piriform cortex, which may lay a foundation for the treatment of diseases related to piriform cortex and olfactory detection.

6.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834299

RESUMO

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Assuntos
COVID-19 , Bainha de Mielina , Bulbo Olfatório , Mucosa Olfatória , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/complicações , Camundongos , Mucosa Olfatória/patologia , Mucosa Olfatória/virologia , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Microglia/patologia , Microglia/metabolismo , Microglia/virologia , Camundongos Transgênicos , Enzima de Conversão de Angiotensina 2/metabolismo , Transtornos do Olfato/patologia , Transtornos do Olfato/virologia , Modelos Animais de Doenças , Masculino , Inflamação/patologia , Inflamação/virologia , Macrófagos/patologia , Feminino
7.
Hum Brain Mapp ; 45(6): e26681, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38656060

RESUMO

Olfactory perception depends not only on olfactory inputs but also on semantic context. Although multi-voxel activity patterns of the piriform cortex, a part of the primary olfactory cortex, have been shown to represent odor perception, it remains unclear whether semantic contexts modulate odor representation in this region. Here, we investigated whether multi-voxel activity patterns in the piriform cortex change when semantic context modulates odor perception and, if so, whether the modulated areas communicate with brain regions involved in semantic and memory processing beyond the piriform cortex. We also explored regional differences within the piriform cortex, which are influenced by olfactory input and semantic context. We used 2 × 2 combinations of word labels and odorants that were perceived as congruent and measured piriform activity with a 1-mm isotropic resolution using 7T MRI. We found that identical odorants labeled with different words were perceived differently. This labeling effect was observed in multi-voxel activity patterns in the piriform cortex, as the searchlight decoding analysis distinguished identical odors with different labels for half of the examined stimulus pairs. Significant functional connectivity was observed between parts of the piriform cortex that were modulated by labels and regions associated with semantic and memory processing. While the piriform multi-voxel patterns evoked by different olfactory inputs were also distinguishable, the decoding accuracy was significant for only one stimulus pair, preventing definitive conclusions regarding the locational differences between areas influenced by word labels and olfactory inputs. These results suggest that multi-voxel patterns of piriform activity can be modulated by semantic context, possibly due to communication between the piriform cortex and the semantic and memory regions.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Odorantes , Percepção Olfatória , Córtex Piriforme , Semântica , Humanos , Masculino , Córtex Piriforme/fisiologia , Córtex Piriforme/diagnóstico por imagem , Percepção Olfatória/fisiologia , Feminino , Adulto , Adulto Jovem
8.
J Physiol ; 602(10): 2343-2358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38654583

RESUMO

Training rodents in a particularly difficult olfactory-discrimination (OD) task results in the acquisition of the ability to perform the task well, termed 'rule learning'. In addition to enhanced intrinsic excitability and synaptic excitation in piriform cortex pyramidal neurons, rule learning results in increased synaptic inhibition across the whole cortical network to the point where it precisely maintains the balance between inhibition and excitation. The mechanism underlying such precise inhibitory enhancement remains to be explored. Here, we use brain slices from transgenic mice (VGAT-ChR2-EYFP), enabling optogenetic stimulation of single GABAergic neurons and recordings of unitary synaptic events in pyramidal neurons. Quantal analysis revealed that learning-induced enhanced inhibition is mediated by increased quantal size of the evoked inhibitory events. Next, we examined the plasticity of synaptic inhibition induced by long-lasting, intrinsically evoked spike firing in post-synaptic neurons. Repetitive depolarizing current pulses from depolarized (-70 mV) or hyperpolarized (-90 mV) membrane potentials induced long-term depression (LTD) and long-term potentiation (LTP) of synaptic inhibition, respectively. We found a profound bidirectional increase in the ability to induce both LTD, mediated by L-type calcium channels, and LTP, mediated by R-type calcium channels after rule learning. Blocking the GABAB receptor reversed the effect of intrinsic stimulation at -90 mV from LTP to LTD. We suggest that learning greatly enhances the ability to modify the strength of synaptic inhibition of principal neurons in both directions. Such plasticity of synaptic plasticity allows fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule. KEY POINTS: Olfactory discrimination rule learning results in long-lasting enhancement of synaptic inhibition on piriform cortex pyramidal neurons. Quantal analysis of unitary inhibitory synaptic events, evoked by optogenetic minimal stimulation, revealed that enhanced synaptic inhibition is mediated by increased quantal size. Surprisingly, metaplasticity of synaptic inhibition, induced by intrinsically evoked repetitive spike firing, is increased bidirectionally. The susceptibility to both long-term depression (LTD) and long-term potentiation (LTP) of inhibition is enhanced after learning. LTD of synaptic inhibition is mediated by L-type calcium channels and LTP by R-type calcium channels. LTP is also dependent on activation of GABAB receptors. We suggest that learning-induced changes in the metaplasticity of synaptic inhibition enable the fine-tuning of inhibition on each particular neuron, thereby stabilizing the network while maintaining the memory of the rule.


Assuntos
Camundongos Transgênicos , Plasticidade Neuronal , Células Piramidais , Animais , Plasticidade Neuronal/fisiologia , Camundongos , Células Piramidais/fisiologia , Neurônios GABAérgicos/fisiologia , Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Sinapses/fisiologia , Optogenética , Inibição Neural/fisiologia , Córtex Piriforme/fisiologia , Camundongos Endogâmicos C57BL , Depressão Sináptica de Longo Prazo/fisiologia
9.
Front Mol Neurosci ; 17: 1355140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550251

RESUMO

Introduction: Cumulative evidence suggests that sensory cortices interact with the basolateral amygdala (BLA) defense circuitry to mediate threat conditioning, memory retrieval, and extinction learning. The olfactory piriform cortex (PC) has been posited as a critical site for olfactory associative memory. Recently, we have shown that N-methyl-D-aspartate receptor (NMDAR)-dependent plasticity in the PC critically underpins olfactory threat extinction. Aging-associated impairment of olfactory threat extinction is related to the hypofunction of NMDARs in the PC. Methods: In this study, we investigated activation of neuronal cFos and epigenetic marks in the BLA and PC using immunohistochemistry, following olfactory threat conditioning and extinction learning in rats. Results: We found highly correlated cFos activation between the posterior PC (pPC) and BLA. cFos was correlated with the degree of behavioral freezing in the pPC in both adult and aged rats, and in the BLA only in adult rats. Markers of DNA methylation 5 mC and histone acetylation H3K9/K14ac, H3K27ac, and H4ac exhibited distinct training-, region-, and age-dependent patterns of activation. Strong correlations of epigenetic marks between the BLA and pPC in adult rats were found to be a general feature. Conversely, aged rats only exhibited correlations of H3 acetylations between the two structures. Histone acetylation varied as a function of aging, revealed by a reduction of H3K9/K14ac and an increase of H4ac in aged brains at basal condition and following threat conditioning. Discussion: These findings underscore the coordinated role of PC and BLA in olfactory associative memory storage and extinction, with implications for understanding aging related cognitive decline.

10.
Cell Rep ; 43(4): 114013, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551962

RESUMO

Sampling behaviors have sensory consequences that can hinder perceptual stability. In olfaction, sniffing affects early odor encoding, mimicking a sudden change in odor concentration. We examined how the inhalation speed affects the representation of odor concentration in the main olfactory cortex. Neurons combine the odor input with a global top-down signal preceding the sniff and a mechanosensory feedback generated by the air passage through the nose during inhalation. Still, the population representation of concentration is remarkably sniff invariant. This is because the mechanosensory and olfactory responses are uncorrelated within and across neurons. Thus, faster odor inhalation and an increase in concentration change the cortical activity pattern in distinct ways. This encoding strategy affords tolerance to potential concentration fluctuations caused by varying inhalation speeds. Since mechanosensory reafferences are widespread across sensory systems, the coding scheme described here may be a canonical strategy to mitigate the sensory ambiguities caused by movements.


Assuntos
Odorantes , Córtex Olfatório , Olfato , Animais , Córtex Olfatório/fisiologia , Olfato/fisiologia , Mecanotransdução Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurônios/metabolismo
11.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38430912

RESUMO

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Assuntos
Empatia , Caracteres Sexuais , Animais , Masculino , Feminino , Camundongos , Empatia/fisiologia , Córtex Piriforme/fisiologia , Córtex Piriforme/metabolismo , Sinais (Psicologia) , Camundongos Endogâmicos C57BL , Afeto/fisiologia , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Animal/fisiologia
12.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542133

RESUMO

The present investigation was designed based on the evidence that, in neurodegenerative disorders, such as Alzheimer's dementia (AD) and Parkinson's disease (PD), damage to the locus coeruleus (LC) arising norepinephrine (NE) axons (LC-NE) is documented and hypothesized to foster the onset and progression of neurodegeneration within target regions. Specifically, the present experiments were designed to assess whether selective damage to LC-NE axons may alter key proteins involved in neurodegeneration within specific limbic regions, such as the hippocampus and piriform cortex, compared with the dorsal striatum. To achieve this, a loss of LC-NE axons was induced by the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) in C57 Black mice, as assessed by a loss of NE and dopamine-beta-hydroxylase within target regions. In these experimental conditions, the amount of alpha-synuclein (alpha-syn) protein levels were increased along with alpha-syn expressing neurons within the hippocampus and piriform cortex. Similar findings were obtained concerning phospho-Tau immunoblotting. In contrast, a decrease in inducible HSP70-expressing neurons and a loss of sequestosome (p62)-expressing cells, along with a loss of these proteins at immunoblotting, were reported. The present data provide further evidence to understand why a loss of LC-NE axons may foster limbic neurodegeneration in AD and limbic engagement during PD.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Camundongos , Animais , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , Neurônios/metabolismo , Neurotoxinas/farmacologia , Axônios/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo
13.
Adv Biol (Weinh) ; 8(3): e2300323, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145360

RESUMO

The acquisition of complex rules requires modifications in intrinsic plasticity of excitatory neurons within relevant brain areas. Olfactory discrimination (OD) rule learning occludes slow calcium-dependent potassium current (sIAHP ) in piriform cortex (PC) pyramidal neurons, which increases their intrinsic neuronal excitability. Similar learning-induced sIAHP changes are demonstrated in hippocampal CA1. The shutdown of sIAHP is mediated by the metabotropic activation of the kainate subtype glutamatergic receptor, GluK2. Here, the duration of training required for OD rule learning increased significantly as the mice matured and aged is first shown, which appears earlier in 5xFAD mice. At the cellular biophysical level, aging is accompanied by reduction in the post-burst AHP in these neurons, while neuronal excitability remains stable. This is in contrast to aging CA1 neurons that exhibit enhanced post-burst AHPs in previous reports. Kainate reduces post-burst AHP in adults, but not in aged PC neurons, whereas it reduces post-burst AHPs in hippocampal CA1 pyramidal neurons of both young and aged mice. Overexpression of GluK2 in CA1 neurons restores OD learning capabilities in aged wild-type and 5xFAD mice, to a level comparable to young adults. Activation of GluK2 receptors in selectively vulnerable neurons can prevent aging-related cognitive decline is suggested.


Assuntos
Ácido Caínico , Células Piramidais , Camundongos , Animais , Células Piramidais/fisiologia , Hipocampo/fisiologia , Neurônios , Receptores de Ácido Caínico , Envelhecimento/fisiologia
14.
Curr Biol ; 33(22): 4857-4868.e6, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858342

RESUMO

The olfactory bulb (OB) is a critical component of mammalian olfactory neuroanatomy. Beyond being the first and sole relay station for olfactory information to the rest of the brain, it also contains elaborate stereotypical circuitry that is considered essential for olfaction. Indeed, substantial lesions of the OB in rodents lead to anosmia. Here, we examined the circuitry that underlies olfaction in a mouse model with severe developmental degeneration of the OB. These mice could perform odor-guided tasks and even responded normally to innate olfactory cues. Despite the near total loss of the OB, piriform cortices in these mice responded to odors, and its neural activity sufficed to decode odor identity. We found that sensory neurons express the full repertoire of olfactory receptors, and their axons project primarily to the rudiments of the OB but also, ectopically, to olfactory cortical regions. Within the OB, the number of principal neurons was greatly reduced, and the morphology of their dendrites was abnormal, extending over large regions within the OB. Glomerular organization was totally lost in the severe cases of OB degeneration and altered in the more conserved OBs. This study shows that olfactory functionality can be preserved despite reduced and aberrant circuitry that is missing many of the elements believed to be essential for olfaction, and it may explain reported retention of olfaction in humans with degenerated OBs.


Assuntos
Bulbo Olfatório , Neurônios Receptores Olfatórios , Humanos , Camundongos , Animais , Bulbo Olfatório/fisiologia , Olfato/fisiologia , Odorantes , Axônios , Mamíferos
15.
Proc Natl Acad Sci U S A ; 120(44): e2309986120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878718

RESUMO

Extinction of threat memory is a measure of behavioral flexibility. In the absence of additional reinforcement, the extinction of learned behaviors allows animals and humans to adapt to their changing environment. Extinction mechanisms and their therapeutic implications for maladaptive learning have been extensively studied. However, how aging affects extinction learning is much less understood. Using a rat model of olfactory threat extinction, we show that the extinction of olfactory threat memory is impaired in aged Sprague-Darley rats. Following extinction training, long-term depression (LTD) in the piriform cortex (PC) was inducible ex vivo in aged rats and was NMDA receptor (NMDAR)-independent. On the other hand, adult rats acquired successful olfactory threat extinction, and LTD was not inducible following extinction training. Neuronal cFos activation in the posterior PC correlated with learning and extinction performance in rats. NMDAR blockade either systemically or locally in the PC during extinction training prevented successful extinction in adult rats, following which NMDAR-dependent LTD became inducible ex vivo. This suggests that extinction learning employs NMDAR-dependent LTD mechanisms in the PC of adult rats, thus occluding further LTD induction ex vivo. The rescue of olfactory threat extinction in aged rats by D-cycloserine, a partial NMDAR agonist, suggests that the impairment in olfactory threat extinction of aged animals may relate to NMDAR hypofunctioning and a lack of NMDAR-dependent LTD. These findings are consistent with an age-related switch from NMDAR-dependent to NMDAR-independent LTD in the PC. Optimizing NMDAR function in sensory cortices may improve learning and flexible behavior in the aged population.


Assuntos
Córtex Piriforme , Receptores de N-Metil-D-Aspartato , Humanos , Ratos , Animais , Idoso , Receptores de N-Metil-D-Aspartato/metabolismo , Depressão , Córtex Piriforme/metabolismo , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia
16.
Front Behav Neurosci ; 17: 1278324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840547

RESUMO

Olfaction is a critical sense that allows animals to navigate and understand their environment. In mammals, the critical brain structure to receive and process olfactory information is the olfactory bulb, a structure characterized by a laminated pattern with different types of neurons, some of which project to distant telencephalic structures, like the piriform cortex, the amygdala, and the hippocampal formation. Therefore, the olfactory bulb is the first structure of a complex cognitive network that relates olfaction to different types of memory, including episodic memories. The olfactory bulb continuously adds inhibitory newborn neurons throughout life; these cells locate both in the granule and glomerular layers and integrate into the olfactory circuits, inhibiting projection neurons. However, the roles of these cells modulating olfactory memories are unclear, particularly their role in fear memories. We consider that olfactory neurogenesis might modulate olfactory fear memories by a plastic process occurring in the olfactory bulb.

17.
Methods Mol Biol ; 2710: 209-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688735

RESUMO

Neural circuits consist of a myriad of distinct cell types, each with specific intrinsic properties and patterns of synaptic connectivity, which transform neural input and convey this information to downstream targets. Understanding how different features of an odor stimulus are encoded and relayed to their appropriate targets will require selective identification and manipulation of these different elements of the circuit. Here, we describe methods to obtain dense, extracellular electrophysiological recordings of odor-evoked activity in olfactory (piriform) cortex of awake, head-fixed mice, and optogenetic tools and procedures to identify genetically defined cell types within this circuit.


Assuntos
Córtex Olfatório , Córtex Piriforme , Animais , Camundongos , Vigília , Optogenética , Olfato
18.
Top Cogn Sci ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690113

RESUMO

Representational drift is a phenomenon of increasing interest in the cognitive and neural sciences. While investigations are ongoing for other sensory cortices, recent research has demonstrated the pervasiveness in which it occurs in the piriform cortex for olfaction. This gradual weakening and shifting of stimulus-responsive cells has critical implications for sensory stimulus-response models and perceptual decision-making. While representational drift may complicate traditional sensory processing models, it could be seen as an advantage in olfaction, as animals live in environments with constantly changing and unpredictable chemical information. Non-topographical encoding in the olfactory system may aid in contextualizing reactions to promiscuous odor stimuli, facilitating adaptive animal behavior and survival. This article suggests that traditional models of stimulus-(neural) response mapping in olfaction may need to be reevaluated and instead motivates the use of dynamical systems theory as a methodology and conceptual framework.

19.
Front Neurosci ; 17: 1247375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680965

RESUMO

The olfactory tubercle (OT), which is a component of the olfactory cortex and ventral striatum, has functional domains that play a role in odor-guided motivated behaviors. Learning odor-guided attractive and aversive behavior activates the anteromedial (am) and lateral (l) domains of the OT, respectively. However, the mechanism driving learning-dependent activation of specific OT domains remains unknown. We hypothesized that the neuronal connectivity of OT domains is plastically altered through olfactory experience. To examine the plastic potential of synaptic connections to OT domains, we optogenetically stimulated intracortical inputs from the piriform cortex or sensory inputs from the olfactory bulb to the OT in mice in association with a food reward for attractive learning and electrical foot shock for aversive learning. For both intracortical and sensory connections, axon boutons that terminated in the OT domains were larger in the amOT than in the lOT for mice exhibiting attractive learning and larger in the lOT than in the amOT for mice exhibiting aversive learning. These results indicate that both intracortical and sensory connections to the OT domains have learning-dependent plastic potential, suggesting that this plasticity underlies learning-dependent activation of specific OT domains and the acquisition of appropriate motivated behaviors.

20.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745564

RESUMO

While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigated whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engaged head-fixed mice in a multimodal rule-reversal task guided by olfactory and auditory cues. Both odor and, surprisingly, the sound cues triggered cortical bulbar feedback responses which preceded the behavioral report. Responses to the same sensory cue were strongly modulated upon changes in stimulus-reward contingency (rule reversals). The re-shaping of individual bouton responses occurred within seconds of the rule-reversal events and was correlated with changes in the behavior. Optogenetic perturbation of cortical feedback within the bulb disrupted the behavioral performance. Our results indicate that the piriform-to-olfactory bulb feedback carries reward contingency signals and is rapidly re-formatted according to changes in the behavioral context.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA