Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38399480

RESUMO

Nadolol is a long-acting non-selective ß-adrenergic antagonist that helps treat angina and hypertension. The current study aimed to develop and validate the physiologically based pharmacokinetic model (PBPK) of nadolol in healthy adults, renal-compromised, and pediatric populations. A comprehensive PBPK model was established by utilizing a PK-Sim simulator. After establishing and validating the model in healthy adults, pathophysiological changes i.e., blood flow, hematocrit, and GFR that occur in renal failure were incorporated in the developed model, and the drug exposure was assessed through Box plots. The pediatric model was also developed and evaluated by considering the renal maturation process. The validation of the models was carried out by visual predictive checks, calculating predicted to observed (Rpre/obs) and the average fold error (AFE) of PK parameters i.e., the area under the concentration-time curve (AUC0-t), the maximum concentration in plasma (Cmax), and CL (clearance). The presented PBPK model successfully simulates the nadolol PK in healthy adults, renal-impaired, and pediatric populations, as the Rpre/obs values of all PK parameters fall within the acceptable range. The established PBPK model can be useful in nadolol dose optimization in patients with renal failure and children with supraventricular tachycardia.

2.
Front Pharmacol ; 14: 1326373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089044

RESUMO

Tirzepatide is an emerging hypoglycemic agent that has been increasing used in adults, yet its pharmacokinetic (PK) behavior and dosing regimen in pediatric population remain unclear. This study aimed to employ the physiologically based pharmacokinetic (PBPK) model to predict changes of tirzepatide exposure in pediatric population and to provide recommendations for its dose adjustments. A PBPK model of tirzepatide in adults was developed and verified by comparing the simulated plasma exposure with the observed data using PK-Sim&MoBi software. This model was then extrapolated to three specific age subgroups, i.e., children (10-12 years), early adolescents (12-15 years), and adolescents (15-18 years). Each subgroup included healthy and obese population, respectively. All known age-related physiological changes were incorporated into the pediatric model. To identify an appropriate dosing regimen that yielded PK parameters which were comparable to those in adults, the PK parameters for each aforementioned subgroup were predicted at pediatric doses corresponding to 87.5%, 75%, 62.5%, and 50% of the adult reference dose. According to the results of simulation, dose adjustments of tirzepatide are necessary for the individuals aged 10-12 years, as well as those aged 12-15 years with healthy body weights. In conclusion, the adult PBPK model of tirzepatide was successfully developed and validated for the first time, and the extrapolated pediatric model could be used to predict pediatric dosing regimen of tirzepatide, which will provide invaluable references for the design of future clinical trials and its rational use in the pediatric population.

3.
Front Pharmacol ; 14: 1200828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547336

RESUMO

Introduction: Ceftriaxone is one of commonly prescribed beta-lactam antibiotics with several label and off-label clinical indications. A high fraction of administered dose of ceftriaxone is excreted renally in an unchanged form, and it may accumulate significantly in patients with impaired renal functions, which may lead to toxicity. Methods: In this study, we employed a physiologically-based pharmacokinetic (PBPK) modeling, as a tool for precision dosing, to predict the biological exposure of ceftriaxone in a virtually-constructed healthy and chronic kidney disease patient populations, with subsequent dosing optimizations. We started developing the model by integrating the physicochemical properties of the drug with biological system information in a PBPK software platform. A PBPK model in an adult healthy population was developed and evaluated visually and numerically with respect to experimental pharmacokinetic data. The model performance was evaluated based on the fold error criteria of the predicted and reported values for different pharmacokinetic parameters. Then, the model was applied to predict drug exposure in CKD patient populations with various degrees of severity. Results: The developed PBPK model was able to precisely describe the pharmacokinetic behavior of ceftriaxone in adult healthy population and in mild, moderate, and severe CKD patient populations. Decreasing the dose by approximately 25% in mild and 50% in moderate to severe renal disease provided a comparable exposure to the healthy population. Based on the simulation of multiple dosing regimens in severe CKD population, it has been found that accumulation of 2 g every 24 h is lower than the accumulation of 1 g every 12 h dosing regimen. Discussion: In this study, the observed concentration time profiles and pharmacokinetic parameters for ceftriaxone were successfully reproduced by the developed PBPK model and it has been shown that PBPK modeling can be used as a tool for precision dosing to suggest treatment regimens in population with renal impairment.

4.
J Pharm Sci ; 112(10): 2667-2675, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37023853

RESUMO

Levetiracetam (Lev) is an antiepileptic drug that has been increasingly used in the epilepsy pediatric population in recent years, but its pharmacokinetic behavior in pediatric population needs to be characterized clearly. Clinical trials for the pediatric drug remain difficult to conduct due to ethical and practical factors. The purpose of this study was to use the physiologically based pharmacokinetic (PBPK) model to predict changes in plasma exposure of Lev in pediatric patients and to provide recommendations for dose adjustment. A PBPK model of Lev in adults was developed using PK-Sim® software and extrapolated to the entire age range of the pediatric population. The model was evaluated using clinical pharmacokinetic data. The results showed the good fit between predictions and observations of the adult and pediatric models. The recommended doses for neonates, infants and children are 0.78, 1.67 and 1.22 times that of adults, respectively. Moreover, at the same dose, plasma exposure in adolescents was similar to that of adults. The PBPK models of Lev for adults and pediatrics were successfully developed and validated to provide a reference for the rational administration of drugs in the pediatric population.


Assuntos
Epilepsia , Modelos Biológicos , Lactente , Recém-Nascido , Adulto , Adolescente , Criança , Humanos , Levetiracetam , Anticonvulsivantes/farmacocinética , Epilepsia/tratamento farmacológico , Preparações Farmacêuticas , Simulação por Computador
5.
J Pharmacokinet Pharmacodyn ; 50(3): 229-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877385

RESUMO

Monoclonal antibodies, endogenous IgG, and serum albumin bind to FcRn in the endosome for salvaging and recycling after pinocytotic uptake, which prolongs their half-life. This mechanism has been broadly recognized and is incorporated in currently available PBPK models. Newer types of large molecules have been designed and developed, which also bind to FcRn in the plasma space for various mechanistic reasons. To incorporate FcRn binding affinity in PBPK models, binding in the plasma space and subsequent internalisation into the endosome needs to be explicitly represented. This study investigates the large molecules model in PK-Sim® and its applicability to molecules with FcRn binding affinity in plasma. With this purpose, simulations of biologicals with and without plasma binding to FcRn were performed with the large molecule model in PK-Sim®. Subsequently, this model was extended to ensure a more mechanistic description of the internalisation of FcRn and the FcRn-drug complexes. Finally, the newly developed model was used in simulations to explore the sensitivity for FcRn binding in the plasma space, and it was fitted to an in vivo dataset of wild-type IgG and FcRn inhibitor plasma concentrations in Tg32 mice. The extended model demonstrated a strongly increased sensitivity of the terminal half-life towards the plasma FcRn binding affinity and could successfully fit the in vivo dataset in Tg32 mice with meaningful parameter estimates.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Camundongos , Animais , Receptores Fc/metabolismo , Anticorpos Monoclonais/metabolismo , Endossomos/metabolismo , Imunoglobulina G/metabolismo
6.
Curr Drug Metab ; 23(14): 1115-1123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36718061

RESUMO

PURPOSE: Physiological changes during pregnancy can affect antiretroviral drug processes and further influence drug efficacy and safety. Physiologically-based pharmacokinetic (PBPK) modeling offers a unique modality to predict PK in pregnant women. The objective of this study was to establish a PBPK modeling of tenofovir disoproxil fumarate (TDF) in pregnant women, to provide a reference for the clinical use of TDF. METHODS: A full PBPK modeling of tenofovir (TFV) and TDF following i.v. and p.o. administration was developed using the simulation software PK-Sim®. The modeling was then extrapolated to pregnant women based on pregnancy- related physiological parameters in Mobi® Simulator. The mean fold error (MFE) and geometric mean fold error (GMFE) methods were used to compare the differences between predicted and observed values of PK parameters (Cmax, tmax, AUC0-∞) to evaluate the accuracy of PBPK modeling. RESULTS: The developed PBPK modeling successfully predicted the TDF disposition in the non-pregnant population, wherein the MFE average and GMFE of all predicted PK parameters were within a 1.5-fold error range, and more than 96.30% of the predicted drug concentration values were within a 2-fold error range of the measured values. After the extrapolation of these models to the third trimester of pregnancy, the scaling anatomy/physiology and hepatic intrinsic clearance made the pregnant population PBPK modeling meet the standard requirement of 0.5 < MFE and GMFE value < 2. It was more appropriate to simulate the in vivo process of low-dose TDF in pregnant women. CONCLUSION: The non-pregnant population PBPK modeling of TDF established in our study can be extrapolated to pregnant women. Our study provides a reference for realizing clinical personalized medication for pregnant women.


Assuntos
Gestantes , Software , Feminino , Humanos , Gravidez , Tenofovir/farmacocinética , Preparações Farmacêuticas , Simulação por Computador
7.
Front Pharmacol ; 13: 1013432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278167

RESUMO

Background: Propylthiouracil (PTU) treats hyperthyroidism and thyroid crisis in all age groups. A variety of serious adverse effects can occur during clinical use and require attention to its pharmacokinetic and pharmacodynamic characteristics in various populations. Objective: To provide information for individualized dosing and clinical evaluation of PTU in the clinical setting by developing a physiologically based pharmacokinetic (PBPK) model, predicting ADME characteristics, and extrapolating to elderly and pediatric populations. Methods: Relevant databases and literature were retrieved to collect PTU's pharmacochemical properties and ADME parameters, etc. A PBPK model for adults was developed using PK-Sim® software to predict tissue distribution and extrapolated to elderly and pediatric populations. The mean fold error (MFE) method was used to compare the differences between predicted and observed values to assess the accuracy of the PBPK model. The model was validated using PTU pharmacokinetic data in healthy adult populations. Result: The MFE ratios of predicted to observed values of AUC0-t, Cmax, and Tmax were mainly within 0.5 and 2. PTU concentrations in various tissues are lower than venous plasma concentrations. Compared to healthy adults, the pediatric population requires quantitative adjustment to the appropriate dose to achieve the same plasma exposure levels, while the elderly do not require dose adjustments. Conclusion: The PBPK model of PTU was successfully developed, externally validated, and applied to tissue distribution prediction and special population extrapolation, which provides a reference for clinical individualized drug administration and evaluation.

8.
Environ Int ; 169: 107547, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179644

RESUMO

Physiologically-based kinetic (PBK) models are effective tools for designing toxicological studies and conducting extrapolations to inform hazard characterization in risk assessment by filling data gaps and defining safe levels of chemicals. In the present work, a generic avian PBK model for male and female birds was developed using PK-Sim and MoBi from the Open Systems Pharmacology Suite (OSPS). The PBK model includes an ovulation model (egg development) to predict concentrations of chemicals in eggs from dietary exposure. The model was parametrized for chicken (Gallus gallus), bobwhite quail (Colinus virginianus) and mallard duck (Anas platyrhynchos) and was tested with nine chemicals for which in vivo studies were available. Time-concentration profiles of chemicals reaching tissues and egg compartment were simulated and compared to in vivo data. The overall accuracy of the PBK model predictions across the analyzed chemicals was good. Model simulations were found to be in the range of 22-79% within a 3-fold and 41-89% were within 10- fold deviation of the in vivo observed data. However, for some compounds scarcity of in-vivo data and inconsistencies between published studies allowed only a limited goodness of fit evaluation. The generic avian PBK model was developed following a "best practice" workflow describing how to build a PBK model for novel species. The credibility and reproducibility of the avian PBK models were scored by evaluation according to the available guidance documents from WHO (2010), and OECD (2021), to increase applicability, confidence and acceptance of these in silico models in chemical risk assessment.


Assuntos
Galinhas , Modelos Biológicos , Animais , Simulação por Computador , Patos , Feminino , Cinética , Masculino , Reprodutibilidade dos Testes
9.
Pharmaceutics ; 14(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36145543

RESUMO

The physiologically based pharmacokinetic (PBPK) approach can be used to develop mathematical models for predicting the absorption, distribution, metabolism, and elimination (ADME) of administered drugs in virtual human populations. Haloperidol is a typical antipsychotic drug with a narrow therapeutic index and is commonly used in the management of several medical conditions, including psychotic disorders. Due to the large interindividual variability among patients taking haloperidol, it is very likely for them to experience either toxic or subtherapeutic effects. We intend to develop a haloperidol PBPK model for identifying the potential sources of pharmacokinetic (PK) variability after intravenous and oral administration by using the population-based simulator, PK-Sim. The model was initially developed and evaluated to predict the PK of haloperidol and its reduced metabolite in adult healthy population after intravenous and oral administration. After evaluating the developed PBPK model in healthy adults, it was used to predict haloperidol-rifampicin drug-drug interaction and was extended to tuberculosis patients. The model evaluation was performed using visual assessments, prediction error, and mean fold error of the ratio of the observed-to-predicted values of the PK parameters. The predicted PK values were in good agreement with the corresponding reported values. The effects of the pathophysiological changes and enzyme induction associated with tuberculosis and its treatment, respectively, on haloperidol PK, have been predicted precisely. For all clinical scenarios that were evaluated, the predicted values were within the acceptable two-fold error range.

10.
BMC Pharmacol Toxicol ; 21(1): 56, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727574

RESUMO

BACKGROUND: This study aimed to assess the pediatric lisinopril doses using an adult physiological based pharmacokinetic (PBPK) model. As the empirical rules of dose calculation cannot calculate gender-specific pediatric doses and ignores the age-related physiological differences. METHODS: A PBPK model of lisinopril for the healthy adult population was developed for oral (fed and fasting) and IV administration using PK-Sim MoBI® and was scaled down to a virtual pediatric population for prediction of lisinopril doses in neonates to infants, infants to toddler, children at pre-school age, children at school age and the adolescents. The pharmacokinetic parameters were predicted for the above groups at decremental doses of 20 mg, 10 mg, 5 mg, 2.5 mg, and 1.5 mg in order to accomplish doses producing the pharmacokinetic parameters, similar (or comparable) to that of the adult population. The above simulated pediatric doses were compared to the doses computed using the conventional four methods, such as Young's rule, Clark's rule, and weight-based and body surface area-based equations and the dose reported in different studies. RESULTS: Though the doses predicted for all subpopulations of children were comparable to those calculated by Young's rule, yet the conventional methods overestimated the pediatric doses when compared to the respective PBPK-predicted doses. The findings of previous real time pharmacokinetic studies in pediatric patients supported the present simulated dose. CONCLUSION: Thus, PBPK seems to have predictability potential for pediatric dose since it takes into consideration the physiological changes related to age and gender.


Assuntos
Anti-Hipertensivos/administração & dosagem , Lisinopril/administração & dosagem , Modelos Biológicos , Administração Oral , Adolescente , Adulto , Anti-Hipertensivos/sangue , Anti-Hipertensivos/farmacocinética , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Lisinopril/sangue , Lisinopril/farmacocinética , Masculino , Reprodutibilidade dos Testes , Adulto Jovem
11.
Front Pharmacol ; 11: 868, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595502

RESUMO

Physiologically based pharmacokinetic (PBPK) models are increasingly used to support pediatric dose selection for small molecule drugs. In contrast, only a few pediatric PBPK models for therapeutic antibodies have been published recently, and the knowledge on the maturation of the processes relevant for antibody pharmacokinetics (PK) is limited compared to small molecules. The aim of this study was, thus, to evaluate predictions from antibody PBPK models for children which were scaled from PBPK models for adults in order to identify respective knowledge gaps. For this, we used the generic PBPK model implemented in PK-Sim without further modifications. Focusing on general clearance and distribution mechanisms, we selected palivizumab and bevacizumab as examples for this evaluation since they show simple, linear PK which is not governed by drug-specific target mediated disposition at usual therapeutic dosages, and their PK has been studied in pediatric populations after intravenous application. The evaluation showed that the PK of palivizumab was overall reasonably well predicted, while the clearance for bevacizumab seems to be underestimated. Without implementing additional ontogeny for antibody PK-specific processes into the PBPK model, bodyweight normalized clearance increases only moderately in young children compared to adults. If growth during aging at the time of the simulation was considered, the apparent clearance is approximately 20% higher compared to simulations for which growth was not considered for newborns due to the long half-life of antibodies. To fully understand the differences and similarities in the PK of antibodies between adults and children, further research is needed. By integrating available information and data, PBPK modeling can contribute to reveal the relevance of involved processes as well as to generate and test hypothesis.

12.
J Clin Pharmacol ; 59 Suppl 1: S95-S103, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31502689

RESUMO

Food and Drug Administration submissions of physiologically based pharmacokinetic (PBPK) modeling and simulation of small-molecule drugs document the relevance of pediatric drug development and, in particular, information on dosing strategies in children. The most relevant prerequisite for reliable PBPK-based translation of adult pharmacokinetics of a small molecule to children is knowledge of the drug-specific absorption, distribution, metabolism, and elimination (ADME) processes in adults together with existing information about ontogeny of ADME processes relevant for the drug. All mechanisms driving a drug's clearance are of specific importance. For other drug modalities, our knowledge of ADME processes and ontogeny is still limited. More research is required, for example, to understand why some therapeutic proteins show complex differences in pharmacokinetics between adults and children, whereas other proteins seem to follow simple allometric scaling rules. Ontogeny information originates from various sources, such as (semi)quantitative mRNA expression, in vitro activity data, and deconvolution of in vivo pharmacokinetic data. The workflow for pediatric predictions is well described in several articles documenting successful translation from adults to children. The technical hurdles for PBPK modeling are low. State-of-the-art PBPK modeling software tools provide integrated pediatric translation workflows. For example, PK-Sim and MoBi are freely available as fully transparent open-source software via Open Systems Pharmacology (OSP). With the latest 2019 software release, version 8.0, OSP even provides a fully integrated technical framework for the qualification (and requalification) of any specific intended PBPK use in line with Food and Drug Administration and European Medicines Agency PBPK guidance. Qualification packages for pediatric translation are available on the OSP platform.


Assuntos
Modelos Biológicos , Farmacocinética , Adulto , Criança , Pré-Escolar , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Lactente , Recém-Nascido , Preparações Farmacêuticas , Software
13.
J Clin Pharmacol ; 53(10): 1048-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23852614

RESUMO

Physiologically based pharmacokinetic models were developed using MATLAB Simulink® and PK-Sim®. We compared the capability and usefulness of these two models by simulating pharmacokinetic changes of midazolam under exercise and heat stress to verify the usefulness of MATLAB Simulink® as a generic PBPK modeling software. Although both models show good agreement with experimental data obtained under resting condition, their predictions of pharmacokinetics changes are less accurate in the stressful conditions. However, MATLAB Simulink® may be more flexible to include physiologically based processes such as oral absorption and simulate various stress parameters such as stress intensity, duration and timing of drug administration to improve model performance. Further work will be conducted to modify algorithms in our generic model developed using MATLAB Simulink® and to investigate pharmacokinetics under other physiological stress such as trauma.


Assuntos
Hipnóticos e Sedativos/farmacocinética , Midazolam/farmacocinética , Modelos Biológicos , Estresse Fisiológico/fisiologia , Exercício Físico , Temperatura Alta , Humanos , Hipnóticos e Sedativos/sangue , Midazolam/sangue , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA