Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Vet Res Commun ; 47(1): 191-205, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35633471

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) have been responsible for causing several severe outbreaks across the world. To protect poultry farms and to prevent the possible spread of new influenza pandemics, vaccines that are both efficacious and low-cost are in high demand. We produced stable, large hemagglutinin H5 oligomers in planta by the specific interaction between S•Tag and S•Protein. H5 oligomers combined via S•Tag::S•Protein interaction in plant crude extracts induced strong humoral immune responses, strong neutralizing antibody responses, and resistance in chickens after challenge with a wild type HPAIV H5 virus strain. In all three parameters, plant crude extracts with H5 oligomers induced better responses than crude extracts containing trimers. The neutralizing antibodies induced by by two-dose and one dose immunization with an adjuvanted crude extract containing H5 oligomer protected vaccinated chickens from two lethal H5N1 virus strains with the efficiency of 92% and 100%, respectively. Following housing vaccinated chickens together with ten non-immunized chickens, only one of these chickens had detectable levels of the H5N1 virus. To facilitate the easy storage of a candidate vaccine, the H5 oligomer crude extracts were mixed with adjuvants and stored for 3.5 and 5.5 months at 4 °C, and chickens were immunized with these crude extracts. All these vaccinated chickens survived after a lethal H5N1 virus challenge. H5 oligomer crude extracts are comparable to commercial vaccines as they also induce strong virus-neutralizing immune responses following the administration of a single dose. The cost-effective production of plant crude extract vaccine candidates and the high stability after long-term storage will enable and encourage the further exploration of this technology for veterinary vaccine development.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Aviária , Animais , Hemaglutininas , Galinhas , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinação/veterinária
2.
Vaccine ; 41(4): 938-944, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36585278

RESUMO

Malaria kills around 409,000 people a year, mostly children under the age of five. Malaria transmission-blocking vaccines work to reduce malaria prevalence in a community and have the potential to be part of a multifaceted approach required to eliminate the parasites causing the disease. Pfs25 is a leading malaria transmission-blocking antigen and has been successfully produced in a plant expression system as both a subunit vaccine and as a virus-like particle. This study demonstrates an improved version of the virus-like particle antigen display molecule by eliminating known protease sites from the prior A85 variant. This re-engineered molecule, termed B29, displays three times the number of Pfs25 antigens per virus-like particle compared to the original Pfs25 virus-like particle. An improved purification scheme was also developed, resulting in a substantially higher yield and improved purity. The molecule was evaluated in a mouse model and found to induce improved transmission-blocking activity at lower doses and longer durations than the original molecule.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Camundongos , Plasmodium falciparum , Proteínas de Protozoários , Antígenos de Protozoários , Malária/prevenção & controle , Vacinas Antimaláricas/genética , Malária Falciparum/prevenção & controle , Anticorpos Antiprotozoários
3.
Front Vet Sci ; 9: 940395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967993

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a serious infectious causative agent in swine, especially in neonatal piglets. PEDV genotype 2 (G2) strains, particularly G2a, were the primary causes of porcine epidemic diarrhea (PED) outbreaks in Vietnam. Here, we produced a plant-based CO-26K-equivalent epitope (COE) variant from a Vietnamese highly virulent PEDV strain belonging to genotype 2a (COE/G2a) and evaluated the protective efficacy of COE/G2a-GCN4pII protein (COE/G2a-pII) in piglets against the highly virulent PEDV G2a strain following passive immunity. The 5-day-old piglets had high levels of PEDV-specific IgG antibodies, COE-IgA specific antibodies, neutralizing antibodies, and IFN-γ responses. After virulent challenge experiments, all of these piglets survived and had normal clinical symptoms, no watery diarrhea in feces, and an increase in their body weight, while all of the negative control piglets died. These results suggest that the COE/G2a-pII protein produced in plants can be developed as a promising vaccine candidate to protect piglets against PEDV G2a infection in Vietnam.

4.
J Plant Biol ; 65(1): 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602836

RESUMO

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

5.
Front Plant Sci ; 12: 741469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868126

RESUMO

Infectious bursal disease virus (IBDV) is the etiological agent of an immunosuppressive and highly contagious disease that affects young birds causing important economic losses in the poultry industry worldwide. We have previously developed a plant-based vaccine candidate for infectious bursal disease (IBD) that is able to protect against infection with IBDV when administered through intramuscular (im) route. Given that oral vaccination is non-invasive and stimulates the immunity of the mucosal gastrointestinal surface, the initial site of contact and entry of IBDV, the aim of this work was to study if our immunogen was also able to elicit a protective immune response when orally administered. We demonstrated that 85% of the animals that received two oral doses of the vaccine formulation and all animals that were orally boosted after an im prime scheme developed virus neutralizing antibodies and were protected against IBDV infection, evidenced by the bursa/body weight (BB) ratio, absence of T-cell infiltration, and low viral load in bursa. Although mild to moderate bursal damage was observed in some of these animals, these lesions were not as severe as the ones observed in challenged control groups, which also presented signs of acute inflammation, bursal atrophy, T-cell infiltration, and absence of viral clearance. These results show that two immunizations with our recombinant immunogen are able to induce a specific and protective immune response in chicken against IBDV when orally administered in a prime/boost scheme or when the oral boost follows an im prime scheme. In conclusion, our oral plant-based vaccine candidate could represent a viable alternative to conventional vaccines and is of great interest to the poultry industry.

6.
Vaccines (Basel) ; 9(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34579215

RESUMO

The current 15-month coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has accounted for 3.77 million deaths and enormous worldwide social and economic losses. A high volume of vaccine production is urgently required to eliminate COVID-19. Inexpensive and robust production platforms will improve the distribution of vaccines to resource-limited countries. Plant species offer such platforms, particularly through the production of recombinant proteins to serve as immunogens. To achieve this goal, here we expressed the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein in the glycoengineered-tobacco plant Nicotiana benthamiana to provide a candidate subunit vaccine. This recombinant RBD elicited humoral immunity in mice via induction of highly neutralizing antibodies. These findings provide a strong foundation to further advance the development of plant-expressed RBD antigens for use as an effective, safe, and inexpensive SARS-CoV-2 vaccine. Moreover, our study further highlights the utility of plant species for vaccine development.

7.
Vaccines (Basel) ; 9(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34579229

RESUMO

The prevalence of the coronavirus disease 2019 (COVID-19) pandemic in its second year has led to massive global human and economic losses. The high transmission rate and the emergence of diverse SARS-CoV-2 variants demand rapid and effective approaches to preventing the spread, diagnosing on time, and treating affected people. Several COVID-19 vaccines are being developed using different production systems, including plants, which promises the production of cheap, safe, stable, and effective vaccines. The potential of a plant-based system for rapid production at a commercial scale and for a quick response to an infectious disease outbreak has been demonstrated by the marketing of carrot-cell-produced taliglucerase alfa (Elelyso) for Gaucher disease and tobacco-produced monoclonal antibodies (ZMapp) for the 2014 Ebola outbreak. Currently, two plant-based COVID-19 vaccine candidates, coronavirus virus-like particle (CoVLP) and Kentucky Bioprocessing (KBP)-201, are in clinical trials, and many more are in the preclinical stage. Interim phase 2 clinical trial results have revealed the high safety and efficacy of the CoVLP vaccine, with 10 times more neutralizing antibody responses compared to those present in a convalescent patient's plasma. The clinical trial of the CoVLP vaccine could be concluded by the end of 2021, and the vaccine could be available for public immunization thereafter. This review encapsulates the efforts made in plant-based COVID-19 vaccine development, the strategies and technologies implemented, and the progress accomplished in clinical trials and preclinical studies so far.

8.
Vaccines (Basel) ; 9(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358160

RESUMO

Due to the rapid transmission of the coronavirus disease 2019 (COVID-19) causing serious public health problems and economic burden, the development of effective vaccines is a high priority for controlling the virus spread. Our group has previously demonstrated that the plant-produced receptor-binding domain (RBD) of SARS-CoV-2 fused with Fc of human IgG was capable of eliciting potent neutralizing antibody and cellular immune responses in animal studies, and the immunogenicity could be improved by the addition of an alum adjuvant. Here, we performed a head-to-head comparison of different commercially available adjuvants, including aluminum hydroxide gel (alum), AddaVax (MF59), monophosphoryl lipid A from Salmonella minnesota R595 (mPLA-SM), and polyinosinic-polycytidylic acid (poly(I:C)), in mice by combining them with plant-produced RBD-Fc, and the differences in the immunogenicity of RBD-Fc with different adjuvants were evaluated. The specific antibody responses in terms of total IgG, IgG1, and IgG2a subtypes and neutralizing antibodies, as well as vaccine-specific T-lymphocyte responses, induced by the different tested adjuvants were compared. We observed that all adjuvants tested here induced a high level of total IgG and neutralizing antibodies, but mPLA-SM and poly (I:C) showed the induction of a balanced IgG1 and IgG2a (Th2/Th1) immune response. Further, poly (I:C) significantly increased the frequency of IFN-γ-expressing cells compared with control, whereas no significant difference was observed between the adjuvanted groups. This data revealed the adjuvants' role in enhancing the immune response of RBD-Fc vaccination and the immune profiles elicited by different adjuvants, which could prove helpful for the rational development of next-generation SARS-CoV-2 RBD-Fc subunit vaccines. However, additional research is essential to further investigate the efficacy and safety of this vaccine formulation before clinical trials.

9.
J Integr Plant Biol ; 63(8): 1505-1520, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34051041

RESUMO

Influenza epidemics frequently and unpredictably break out all over the world, and seriously affect the breeding industry and human activity. Inactivated and live attenuated viruses have been used as protective vaccines but exhibit high risks for biosafety. Subunit vaccines enjoy high biosafety and specificity but have a few weak points compared to inactivated virus or live attenuated virus vaccines, especially in low immunogenicity. In this study, we developed a new subunit vaccine platform for a potent, adjuvant-free, and multivalent vaccination. The ectodomains of hemagglutinins (HAs) of influenza viruses were expressed in plants as trimers (tHAs) to mimic their native forms. tHAs in plant extracts were directly used without purification for binding to inactivated Lactococcus (iLact) to produce iLact-tHAs, an antigen-carrying bacteria-like particle (BLP). tHAs BLP showed strong immune responses in mice and chickens without adjuvants. Moreover, simultaneous injection of two different antigens by two different formulas, tHAH5N6 + H9N2 BLP or a combination of tHAH5N6 BLP and tHAH9N2 BLP, led to strong immune responses to both antigens. Based on these results, we propose combinations of plant-based antigen production and BLP-based delivery as a highly potent and cost-effective platform for multivalent vaccination for subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza/imunologia , Lactococcus/virologia , Nicotiana/genética , Vacinas Combinadas/imunologia , Animais , Antígenos Virais/imunologia , Galinhas/imunologia , Retículo Endoplasmático/metabolismo , Hemaglutininas/química , Hemaglutininas/metabolismo , Imunidade/efeitos dos fármacos , Imunização , Camundongos , Extratos Vegetais/isolamento & purificação , Plantas Geneticamente Modificadas , Domínios Proteicos , Multimerização Proteica
10.
Vaccine ; 38(46): 7284-7291, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33012608

RESUMO

Following the ban on the use of in-feed antimicrobials, necrotic enteritis (NE) NE is the most important clostridial disease. Vaccination has been considered as a possible approach to prevent NE. Our previous study showed that a chimeric protein product consisting of antigenic epitopes of NetB, Alpha-toxin and Zinc metallopeptidase (Zmp) triggered immune response against C. perfringens. In the current study we optimized the chimeric gene and constructed a fusion protein containing NetB, Alpha-toxin and Metallopeptidase (NAM) for expressing in tobacco plant to use as an edible vaccine for immunizing the chicken against NE. Simultaneously, we expressed and purified a His-tagged recombinant version of the NAM (rNAM) expressed in E. coli BL21 for subcutaneous immunization of chickens. Immunized birds produced strong humoral immune responses against both edible plant-based and parenteral purified rNAM. The responses were determined by the mean titer of antibody in blood samples to be around 9000 and 32,000, for edible and injected rNAM, respectively. Birds immunized subcutaneously showed the most striking responses. However the edible vaccine provided a more long lasting IgY response 14 days after the third vaccination compared to the injected birds. Chickens immunized with either lyophilized leaves expressing rNAM or purified rNAM, subsequently were subjected to the challenge with a virulent C. perfringens strain using an NE disease model. Our results showed that birds immunized both parenterally and orally with recombinant chimeric vaccine were significantly protected against the severity of lesion in the intestinal tract, but the protection provided with the injectable form of the antigen was greater than that of the oral form. Further analysis is needed to check whether these strategies can be used as the potential platform for developing an efficient vaccine against NE.


Assuntos
Toxinas Bacterianas , Infecções por Clostridium , Enterite , Doenças das Aves Domésticas , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Galinhas , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Clostridium perfringens , Enterite/prevenção & controle , Enterite/veterinária , Escherichia coli , Necrose , Doenças das Aves Domésticas/prevenção & controle , Vacinação
11.
Front Immunol ; 11: 2152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042128

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a causative agent of a highly infectious disease with a high mortality rate, especially in newborn piglets in Asian countries resulting in serious economic loss. The development of a rapid, safe, effective and cost-efficient vaccine is crucial to protect pigs against PEDV infection. The COE antigen is regarded to be a major target for subunit vaccine development against PEDV infection. The naturally assembled COE protein forms a homotrimeric structure. In the present study, we successfully produced a trimeric COE protein as a native structure by fusion with the C-terminal isoleucine zipper trimerization (GCN4pII) motif in Nicotiana benthamiana, with a high expression level shown via semi-quantified Western blots. Trimeric COE protein was purified via immobilized metal affinity chromatography (IMAC), and its trimeric structure was successfully demonstrated by a cross-linking reaction, and a native PAGE gel. A crude extract containing the COE trimer was used for evaluating immunogenicity in mice. After 1 and 2 booster immunizations, the crude extract containing trimeric COE elicited elevated PEDV-specific humoral responses, as demonstrated by ELISA and Western blot analyses. Notably, a virus-neutralizing antibody assay indicated that the neutralization activities of sera of mice vaccinated with the crude extract containing COE-GCN4pII were similar to those of mice vaccinated with a commercial vaccine. These results suggest that crude extract containing trimeric COE is a promising plant-based subunit vaccine candidate for PEDV prevention.


Assuntos
Infecções por Coronavirus/imunologia , Epitopos/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Doenças dos Suínos/imunologia , Suínos/fisiologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Epitopos/imunologia , Imunização Secundária , Camundongos , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Nicotiana
12.
Front Vet Sci ; 7: 499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062645

RESUMO

Newcastle disease (ND) is a viral disease that causes labored breathing, periorbital oedema, and ataxia in the majority of avian species. The available vaccines against Newcastle disease virus (NDV) are limited, owing to their low reactivity and multiple dosage requirements. Plant-based machinery provides an attractive and safe system for vaccine production. In the current study, we attempted to express fusion (F) and hemagglutinin-neuraminidase (HN) proteins (the protective antigens against NDV) under constitutive 35S and seed-specific Zein promoters, respectively. Almost 2-7.1-fold higher expression of F gene mRNA in transgenic corn leaves and 8-28-fold higher expression of HN gene mRNA in transgenic corn seeds were observed, when the expression was analyzed by real-time PCR on a relative basis as compared to non-transgenic control plant material (Leaves and seeds). Similarly, 1.66 µg/ml of F protein in corn leaves, i.e., 0.5% of total soluble protein, and 2.4 µg/ml of HN protein in corn seed, i.e., 0.8% of total seed protein, were found when calculated through ELISA. Similar levels of immunological response were generated in chicks immunized through injection of E. coli-produced pET F and pET HN protein as in chickens orally fed leaves and seeds of maize with expressed immunogenic protein. Moreover, the detection of anti-NDV antibodies in the sera of chickens that were fed maize with immunogenic protein, and the absence of these antibodies in chickens fed a normal diet, confirmed the specificity of the antibodies generated through feeding, and demonstrated the potential of utilizing plants for producing more vaccine doses, vaccine generation at higher levels and against other infectious diseases.

13.
Curr Pharm Biotechnol ; 21(10): 973-979, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32101119

RESUMO

BACKGROUND: Heat-Labile enterotoxin B subunit (LTB) produced by Escherichia coli, a non-toxic protein subunit with potential biological properties, is a powerful mucosal and parenteral adjuvant which can induce a strong immune response against co-administered antigens. OBJECTIVE: In the present study, LTB protein, encoded by the optimized ltb (also known synthetic ltb, s-ltb) gene in centella plant (Centella asiatica) for use as an antigen, has been discussed. METHODS: The s-ltb gene was cloned into a plant expression vector, pMYO51, adjacent to the CaMV 35S promoter and was then introduced into centella plant by biolistic transformation. PCR amplification was conducted to determine the presence of s-ltb gene in the transgenic centella plant. The expression of s-ltb gene was analyzed by immunoblotting and quantified by ELISA. In vitro activity of LTB protein was determined by GM1-ELISA. RESULTS: PCR amplification has found seven transgenic centella individuals. However, only five of them produced LTB protein. ELISA analysis showed that the highest amount of LTB protein detected in transgenic centella leaves was about 0.8% of the total soluble protein. GM1-ELISA assay indicated that plant LTB protein bound specifically to GM1-ganglioside, suggesting that the LTB subunits formed active pentamers. CONCLUSION: The s-ltb gene that was successfully transformed into centella plants by the biolistic method has produced a relatively high amount of plant LTB protein in the pentameric quaternary structure that has GM1-ganglioside binding affinity, a receptor on the intestinal epithelial membrane.


Assuntos
Toxinas Bacterianas/genética , Biolística/métodos , Centella/genética , Enterotoxinas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Plantas Geneticamente Modificadas/genética , Animais , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Centella/metabolismo , Enterotoxinas/química , Enterotoxinas/imunologia , Enterotoxinas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Extratos Vegetais , Plantas Geneticamente Modificadas/metabolismo , Triterpenos
14.
Plant Mol Biol ; 102(1-2): 159-169, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820286

RESUMO

KEY MESSAGE: A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.


Assuntos
Toxinas Bacterianas/imunologia , Epitopos/imunologia , Imunização , Proteínas de Plantas/imunologia , Proteínas Recombinantes/imunologia , Vacinas de Plantas Comestíveis/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Toxinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/imunologia , Epitopos/genética , Feminino , Regulação da Expressão Gênica de Plantas , Imunoglobulina A , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/metabolismo , Nicotiana/genética , Vacinação , Vacinas de Plantas Comestíveis/genética
15.
Vaccine ; 37(36): 5203-5210, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31351795

RESUMO

Infectious bursal disease (IBD) is an acute, highly contagious immunosuppressive disease that affects young birds causing important economic losses in the poultry industry worldwide. Strict hygiene management together with effective vaccination programs are the most important strategies to prevent Infectious bursal disease virus entry in poultry production facilities. Hyperimmunisation of dams with inactivated vaccines just before the laying period provides passive immunity to the progeny that protects them during the critical first few weeks after hatching before vaccination with live attenuated virus takes place. In the present study, a safe and economic plant-based vaccine candidate against IBD intended for breeder hens was evaluated. We demonstrated that the recombinant immunogen is effective as booster for previously primed hens since it increases specific antibodies against VP2 that are transmitted to the offspring with titres and decay rate similar to those achieved by inactivated vaccine. Moreover, these maternally derived antibodies have virus neutralising activity and are able to confer protection against challenge in progeny, as evidenced by absence of bursal damage and low viral titres in this organ. Taking into account the disadvantages of inactivated vaccines as well as the benefits of plants as expression systems, such as time and cost efficiency, lower risk of contamination from animal pathogens and nearly unlimited scalability, a plant-based subunit IBD vaccine represents a viable alternative in the veterinary field.


Assuntos
Infecções por Birnaviridae/prevenção & controle , Plantas/metabolismo , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas Atenuadas/uso terapêutico , Vacinas de Produtos Inativados/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Infecções por Birnaviridae/imunologia , Galinhas , Vírus da Doença Infecciosa da Bursa/imunologia , Vírus da Doença Infecciosa da Bursa/patogenicidade , Vacinas de Produtos Inativados/imunologia
16.
Int J Biol Macromol ; 137: 126-131, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31238071

RESUMO

Vibrio parahaemolyticus is the main etiological agent of human gastroenteritis by seafood consumption and some strains from this species causing the Acute Hepatopancreatic Necrosis Disease in shrimp have been recently reported. The PirA-like toxin from V. parahaemolyticus (ToxA) has been recently reported as an attractive antigen implicated in subunit vaccine development. Since plants are attractive hosts for the production and delivery of vaccines in the present study plants expressing ToxA were developed to account with a low cost platform for the production and oral delivery of ToxA. Tobacco plants were genetically engineered by Agrobacterium-mediated transformation to stably integrate the ToxA-coding gene into the nuclear genome. Transgenic lines were rescued in kanamycin-containing medium and analyzed by ELISA to determine ToxA yields observing levels up to 9 µg g-1 FW leaf tissues. Western blot analysis confirmed the presence of the ToxA protein in plant extracts. Immunogenicity assessment of the plant-made ToxA was performed in mice, comprising a 4-dose oral immunization scheme; revealing the induction of anti-ToxA humoral responses (IgG in serum and IgA in feces). This study opens the path for the development of low cost plant-based vaccines against Vibrio parahaemolyticus.


Assuntos
Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Vibrio parahaemolyticus/genética , Administração Oral , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Biotecnologia , Imunidade Humoral/imunologia , Camundongos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas
17.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(6): 290-294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31189781

RESUMO

Alzheimer's disease (AD) is one of the major causes of chronic and progressive cognitive decline, with the pathological hallmarks of senile plaques and neurofibrillary tangles. Amyloid ß peptide (Aß) is the main component of senile plaques, and the pathological load of Aß in the brain has been shown to be a marker of the severity of AD. To prevent the accumulation of plaques, novel and safer plant-based vaccine strategies have been suggested. In this review, we summarize the results of plant vaccines against Aß.


Assuntos
Doença de Alzheimer/imunologia , Biotecnologia/métodos , Plantas , Vacinas/imunologia , Doença de Alzheimer/prevenção & controle , Animais , Humanos , Plantas/genética , Vacinas/genética
18.
J Biotechnol ; 295: 41-48, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30826446

RESUMO

The recent Ebola virus disease (EVD) outbreaks make the development of efficacious and low cost vaccines against Ebola virus (EBOV) an urgent goal. Multiepitopic vaccines allow a rational design rendering vaccines able to induce proper immune responses in terms of polarization and potency. In addition, the pathogen variants can be easily covered by including epitopes conserved among relevant isolates. Other important aspects to consider in vaccination are the costs associated to production, distribution, and administration of the vaccine. Plants provide an advantageous platform for this purpose, since they yield biomass at very low costs and some species can be used to formulate purification-free oral vaccines. In the present study, a multiepitopic protein called Zerola, which carries epitopes from the EBOV glycoprotein (GP), was designed based on immunoinformatic approaches and current experimental evidence on B cell protective GP epitopes. Moreover, expression studies performed in nuclear-transformed tobacco lines confirmed the capacity of the plant cell to synthetize the Zerola antigenic protein. The generation of this plant-based candidate vaccine is a step forward in the development of highly efficient and low cost EBOV vaccines.


Assuntos
Vacinas contra Ebola , Ebolavirus/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes , Proteínas do Envelope Viral , Células Cultivadas , Vacinas contra Ebola/química , Vacinas contra Ebola/genética , Vacinas contra Ebola/metabolismo , Epitopos/química , Epitopos/genética , Epitopos/metabolismo , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Células Vegetais , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
19.
Protein Expr Purif ; 158: 1-8, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30753891

RESUMO

Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idellus) production and results in high mortality in China. VP7 from GCRV is involved in viral infection and could be suitable for developing vaccines for the control of GCRV infection. To obtain a genetically engineered vaccine and a plant-based oral vaccine and to evaluate their immune efficacy as an oral vaccine against GCRV, cholera toxin B subunit (CTB) of Vibrio cholerae fused to VP7 (CTB-VP7) was transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified CTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. Meanwhile, CTB-VP7 was transformed into rice callus cells by Agrobacterium tumefaciens-mediated gene transformation. CTB-VP7 was integrated into the nuclear genome by PCR, and mRNA transcripts of CTB-VP7 were detected. ELISA and Western blot analyses revealed that the CTB-VP7 fusion protein (CTB-VP7) could be expressed in rice callus lines. The level of expression was determined to be 1.54% ±â€¯0.43 of the total soluble protein. CTB-VP7 showed a binding affinity for monosialoganglioside(GM1), a receptor for CTB. CTB-VP7 showed a higher affinity towards GM1 compared to rCTB-VP7. CTB-VP7 bonded to GM1 with different affinities under different temperatures. Maximum binding of CTB-VP7 to GM1 was reported to occur within 2 h at 37 °C, and approximately half of the binding affinity remained at 25 °C. Our results suggest that CTB-VP7 could be produced in rice calli, increasing the possibility that edible plants can be employed in mucosal vaccines for protection against GCRV in aquaculture.


Assuntos
Antígenos Virais/imunologia , Carpas/imunologia , Toxina da Cólera , Doenças dos Peixes/prevenção & controle , Infecções por Reoviridae/prevenção & controle , Reoviridae/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/química , Antígenos Virais/genética , Carpas/virologia , Toxina da Cólera/química , Toxina da Cólera/genética , Toxina da Cólera/imunologia , Toxina da Cólera/isolamento & purificação , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Oryza/química , Oryza/genética , Oryza/imunologia , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Proteínas Recombinantes de Fusão , Reoviridae/genética , Infecções por Reoviridae/genética , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Vacinas Virais/química , Vacinas Virais/genética
20.
Planta ; 247(4): 973-985, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29313103

RESUMO

MAIN CONCLUSION: We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunidade Celular , Imunidade Humoral , Leucócitos Mononucleares/imunologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos/imunologia , Suínos/virologia , Vacinas Sintéticas/biossíntese , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA