Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38534820

RESUMO

Atherosclerosis represents the etiologic source of several cardiovascular events, including myocardial infarction, cerebrovascular accidents, and peripheral artery disease, which remain the leading cause of mortality in the world. Numerous strategies are being delineated to revert the non-optimal projections of the World Health Organization, by both designing new diagnostic and therapeutic approaches or improving the interventional procedures performed by physicians. Deeply understanding the pathological process of atherosclerosis is, therefore, mandatory to accomplish improved results in these trials. Due to their availability, reproducibility, low expensiveness, and rapid production, biomimicking physical models are preferred over animal experimentation because they can overcome some limitations, mainly related to replicability and ethical issues. Their capability to represent any atherosclerotic stage and/or plaque type makes them valuable tools to investigate hemodynamical, pharmacodynamical, and biomechanical behaviors, as well as to optimize imaging systems and, thus, obtain meaningful prospects to improve the efficacy and effectiveness of treatment on a patient-specific basis. However, the broadness of possible applications in which these biomodels can be used is associated with a wide range of tissue-mimicking materials that are selected depending on the final purpose of the model and, consequently, prioritizing some materials' properties over others. This review aims to summarize the progress in fabricating biomimicking atherosclerotic models, mainly focusing on using materials according to the intended application.

2.
Clin Imaging ; 96: 58-63, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36822014

RESUMO

PURPOSE: To assess differences in pericoronary adipose tissue (PCAT) in patients with different plaque types by using several quantitative parameters of PCAT and investigate the relationship between PCAT and different plaque types. MATERIALS AND METHODS: We retrospectively recruited 488 patients diagnosed with stable coronary artery disease (CAD) via coronary computed tomographic angiography, including 279 with calcified plaques (CP), 153 with non-calcified plaques (NCP), and 56 with mixed plaques (MP). Volume, fat attenuation index (FAI), and 10th percentile, 90th percentile, median, and minimum Hounsfield unit (HU) values of PCAT surrounding plaques were quantified. Clinical features and quantitative PCAT parameters were compared between different plaque types. RESULTS: No intergroup differences were observed for age, sex, body mass index, risk factors, and plaque location. Length and PCAT volume in the NCP group were lower than those of the CP and MP groups (P < 0.001), whereas there were no significant differences between the CP and MP groups (P > 0.05). Patients with NCP and MP had a higher FAI and 10th percentile, 90th percentile, median, and minimum HU values of PCAT than CP (P < 0.001); however these values were not significantly different between the NCP and MP groups (P > 0.05). CONCLUSION: The quantitative parameters of PCAT, as a biosensor for CAD, vary among the different plaque types.


Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Humanos , Estudos Retrospectivos , Angiografia Coronária/métodos , Angiografia por Tomografia Computadorizada/métodos , Tecido Adiposo , Vasos Coronários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA