RESUMO
Modern management of hereditary angioedema (HAE) due to reduced C1 inhibitor (C1-INH) function or concentration (HAE-C1-INH) focuses on individualized therapeutic strategies to address the specific needs of children and adolescents as well as the severity of the disease. Psychosocial factors such as the burden of disease and therapy on quality of life and participation play an important role. New medications have already significantly improved the prognosis and health related quality of life in HAE patients, but not all of these therapies have yet been approved for children. Further treatment options that inhibit bradykinin effects are currently being investigated. They target factor XIIa, prekallikrein, plasma kallikrein, or the bradykinin B2 receptor. Modern research focuses on oral options or long-acting parenteral therapy approaches to further optimize care and, in particular, the needs of children. There are also initial developments in the field of gene therapy, which could represent a causal treatment option for HAE in the future. This article focuses on the presentation and treatment of HAE type I (reduced C1-INH concentration) and HAE type II (impaired C1-INH function) in children and adolescents. Acquired AE and HAE with normal C1-INH are rare in the pediatric age group and are not discussed in detail here.
RESUMO
Background: Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective: Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods: A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results: Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044â µM). Conclusions: An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
RESUMO
Activation of the kallikrein-kinin system promotes vascular leakage, inflammation, and neurodegeneration in ischemic stroke. Inhibition of plasma kallikrein (PK) - a key component of the KKS - in the acute phase of ischemic stroke has been reported to reduce thrombosis, inflammation, and damage to the blood-brain barrier. However, the role of PK during the recovery phase after cerebral ischemia is unknown. To this end, we evaluated the effect of subacute PK inhibition starting from day 3 on the recovery process after transient middle artery occlusion (tMCAO). Our study demonstrated a protective effect of PK inhibition by reducing infarct volume and improving functional outcome at day 7 after tMCAO. In addition, we observed reduced thrombus formation in cerebral microvessels, fewer infiltrated immune cells, and an improvement in blood-brain barrier integrity. This protective effect was facilitated by promoting tight junction reintegration, reducing detrimental matrix metalloproteinases, and upregulating regenerative angiogenic markers. Our findings suggest that PK inhibition in the subacute phase might be a promising approach to accelerate the post-stroke recovery process.
Assuntos
Calicreína Plasmática , Recuperação de Função Fisiológica , Animais , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Masculino , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Trombose , AVC Isquêmico/tratamento farmacológico , InflamaçãoRESUMO
Ecallantide comprises Kunitz Domain 1 of Tissue Factor Pathway Inhibitor, mutated at seven amino acid positions to inhibit plasma kallikrein (PK). It is used to treat acute hereditary angioedema (HAE). We appended hexahistidine tags to the N- or C-terminus of recombinant Ecallantide (rEcall) and expressed and purified the resulting proteins, with or without fusion to human serum albumin (HSA), using Pichia pastoris. The inhibitory constant (Ki) of rEcall-H6 or H6-rEcall for PK was not increased by albumin fusion. When 125I-labelled rEcall proteins were injected intravenously into mice, the area under the clearance curve (AUC) was significantly increased, 3.4- and 3.6-fold, for fusion proteins H6-rEcall-HSA and HSA-rEcall-H6 versus their unfused counterparts but remained 2- to 3-fold less than that of HSA-H6. The terminal half-life of H6-rEcall-HSA and HSA-H6 did not differ, although that of HSA-rEcall-H6 was significantly shorter than either other protein. Receptor Associated Protein (RAP), a Low-density lipoprotein Receptor-related Protein (LRP1) antagonist, competed H6-rEcall-HSA clearance more effectively than intravenous immunoglobulin (IVIg), a neonatal Fc receptor (FcRn) antagonist. HSA fusion decreases rEcall clearance in vivo, but LRP1-mediated clearance remains more important than FcRn-mediated recycling for rEcall fusion proteins. The properties of H6-rEcall-HSA warrant investigation in a murine model of HAE.
Assuntos
Proteínas Recombinantes de Fusão , Animais , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/química , Camundongos , Humanos , Meia-Vida , Calicreína Plasmática/metabolismo , Calicreína Plasmática/genética , Albumina Sérica Humana/química , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Receptores Fc , Antígenos de Histocompatibilidade Classe IRESUMO
Human plasma kallikrein (PKa) is a member of the serine protease family and serves as a key mediator of the kallikrein-kinin system (KKS), which is known for its regulatory roles in inflammation, vasodilation, blood pressure, and coagulation. Genetic dysregulation of KKS leads to Hereditary Angioedema (HAE), which is characterized by spontaneous, painful swelling in various body regions. Importantly, HAE frequently coexists with various cancers. Despite substantial efforts towards the development of PKa inhibitors for HAE, there remains a need for bifunctional agents addressing both anti-cancer and anti-HAE aspects, especially against carcinoma-associated comorbid HAE conditions. Consequently, we investigated the therapeutic potential of the anti-glutamine prodrug, isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate (DRP-104), and its active form, 6-Diazo-5-oxo-l-norleucine (DON), recognized for their anti-cancer properties, as novel PKa inhibitors. Utilizing structure-based in silico methods, we conducted a comparative analysis with berotralstat, a clinically approved HAE prophylactic, and sebetralstat, an investigational HAE therapeutic agent, in Phase 3 clinical trials. Inhibiting PKa with DON resulted in relatively heightened structural stability, rigidity, restricted protein folding, and solvent-accessible loop exposure, contributing to increased intra-atomic hydrogen bond formation. Conversely, PKa inhibition with DRP-104 induced restricted residue flexibility and significantly disrupted the critical SER195-HIS57 arrangement in the catalytic triad. Both DON and DRP-104, along with the reference drugs, induced strong cooperative intra-residue motion and bidirectional displacement in the PKa architecture. The results revealed favorable binding kinetics of DON/DRP-104, showing thermodynamic profiles that were either superior or comparable to those of the reference drugs. These findings support their consideration for clinical investigations into the management of carcinoma-associated HAE.
Assuntos
Angioedemas Hereditários , Simulação de Dinâmica Molecular , Calicreína Plasmática , Humanos , Angioedemas Hereditários/tratamento farmacológico , Calicreína Plasmática/antagonistas & inibidores , Calicreína Plasmática/metabolismo , Ligação de Hidrogênio , Neoplasias/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS: To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS: The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION: The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.
Assuntos
Descoberta de Drogas , Sistema Calicreína-Cinina , Humanos , Sistema Calicreína-Cinina/fisiologia , Desenvolvimento de Medicamentos , AnimaisRESUMO
BACKGROUND: Hereditary angioedema (HAE) is a genetic disorder that manifests as recurrent angioedema attacks, most frequently due to absent or reduced C1 inhibitor (C1INH) activity. C1INH is a crucial regulator of enzymatic cascades in the complement, fibrinolytic, and contact systems. Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is an abundant plasma protease inhibitor that can inhibit enzymes in the proteolytic pathways associated with HAE. Nothing is known about its role in HAE. OBJECTIVE: We investigated ITIH4 activation in HAE, establishing it as a potential biomarker, and explored its involvement in HAE-associated proteolytic pathways. METHODS: Specific immunoassays for noncleaved ITIH4 (intact ITIH4) and an assay detecting both intact and cleaved ITIH4 (total ITIH4) were developed. We initially tested serum samples from HAE patients (n = 20), angiotensin-converting enzyme inhibitor-induced edema patients (ACEI) (n = 20), and patients with HAE of unknown cause (HAE-UNK) (n = 20). Validation involved an extended cohort of 80 HAE patients (60 with HAE-C1INH type 1, 20 with HAE-C1INH type 2), including samples taken during attack and quiescent disease periods, as well as samples from 100 healthy controls. RESULTS: In 63% of HAE patients, intact ITIH4 assay showed lower signals than total ITIH4 assay. This difference was not observed in ACEI and HAE-UNK patients. Western blot analysis confirmed cleaved ITIH4 with low intact ITIH4 samples. In serum samples lacking intact endogenous ITIH4, we observed immediate cleavage of added recombinant ITIH4, suggesting continuous enzymatic activity in the serum. Confirmatory HAE cohort analysis revealed significantly lower intact ITIH4 levels in both type 1 and type 2 HAE patients compared to controls, with consistently low intact/total ITIH4 ratios during clinical HAE attacks. CONCLUSION: The disease-specific low intact ITIH4 levels highlight its unique nature in HAE. ITIH4 may exhibit compensatory mechanisms in HAE, suggesting its utility as a diagnostic and prognostic biomarker. The variations during quiescent and active disease periods raise intriguing questions about the dynamics of proteolytic pathways in HAE.
Assuntos
Angioedemas Hereditários , Biomarcadores , Proteínas Secretadas Inibidoras de Proteinases , Humanos , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Idoso , Adolescente , Adulto Jovem , Glicoproteínas/sangue , Proteína Inibidora do Complemento C1/genéticaRESUMO
Background: Berotralstat is a once-daily oral inhibitor of plasma kallikrein for the prophylaxis of hereditary angioedema (HAE) in patients ≥12 years. APeX-J aimed to evaluate the efficacy and safety of berotralstat in Japan. Methods: APeX-J was a Phase III trial comprising 3 parts (NCT03873116). Part 1 was a randomized, placebo-controlled evaluation of berotralstat 150 or 110 mg over 24 weeks. Part 2 was a 28-week dose-blinded phase in which berotralstat-treated patients continued the same dose and placebo patients were re-randomized to berotralstat 150 or 110 mg. In Part 3, all patients remaining on study received berotralstat 150 mg in an open-label manner for up to an additional 52 weeks. The primary endpoint of Parts 2 and 3 was long-term safety and tolerability, and secondary endpoints examined effectiveness. Results: Seventeen patients entered Part 2, and 11 continued into Part 3. Treatment-emergent adverse events (TEAEs) were reported by 14/17 patients (82.4%) in Parts 2 or 3; the most common were nasopharyngitis, abdominal pain, cystitis, influenza, and vertigo. One patient (5.9%) experienced a drug-related TEAE (Grade 4 increased hepatic enzyme). No drug-related serious TEAEs were reported. For patients who completed 26 months of treatment with berotralstat 150 mg (n = 5), mean (standard error of the mean) monthly HAE attack rates and on-demand medication use decreased from baseline by 1.15 (0.09) attacks/month and 2.8 (0.64) doses/month, respectively. Sustained improvements were also observed in patient quality of life and treatment satisfaction. Conclusions: Long-term prophylaxis with berotralstat raised no new safety signals and was effective at reducing attacks and improving patient-reported outcomes. Trial registration: ClinicalTrials.gov NCT03873116. Registered March 13, 2019. Retrospectively registered.
RESUMO
BACKGROUND: Hereditary angioedema (HAE) is a potentially fatal disease characterized by unpredictable, recurrent, often disabling swelling attacks. In a randomized phase 2 study, donidalorsen reduced HAE attack frequency and improved patient quality-of-life (ISIS721744-CS2, NCT04030598). We report the 2-year interim analysis of the phase 2 open-label extension (OLE) study (ISIS 721744-CS3, NCT04307381). METHODS: In the OLE, the on-treatment study period consisted of fixed (weeks 1-13, donidalorsen 80 mg subcutaneously every 4 weeks [Q4W]) and flexible (weeks 17-105, donidalorsen 80 mg Q4W, 80 mg every 8 weeks [Q8W], or 100 mg Q4W) dosing periods. The primary outcome was incidence and severity of treatment-emergent adverse events (TEAEs). The secondary outcomes included efficacy, pharmacodynamic, and quality-of-life assessments. RESULTS: Seventeen patients continued in the OLE study. No serious TEAEs or TEAEs leading to treatment discontinuation were reported. Mean monthly HAE attack rate was 96% lower than the study run-in baseline rate (mean, 0.06/month; 95% confidence interval [CI], 0.02-0.10; median, 0.04 on-treatment vs. mean, 2.70/month; 95% CI, 1.94-3.46; median, 2.29 at baseline). Mean monthly attack rate for Q8W dosing (n = 8) was 0.29 (range, 0.0-1.7; 95% CI, -0.21 to 0.79; median, 0.00). Mean plasma prekallikrein and D-dimer concentrations decreased, and Angioedema Quality of Life Questionnaire total score improved from baseline to week 105 with donidalorsen. CONCLUSION: The 2-year interim results of this phase 2 OLE study of donidalorsen in patients with HAE demonstrated no new safety signals; donidalorsen was well tolerated. There was durable efficacy with a 96% reduction in HAE attacks.
Assuntos
Angioedemas Hereditários , Oligonucleotídeos , Humanos , Angioedemas Hereditários/tratamento farmacológico , Pré-Calicreína , Qualidade de Vida , Resultado do Tratamento , Proteína Inibidora do Complemento C1/uso terapêuticoRESUMO
BACKGROUND: Berotralstat is a first-line, once-daily oral plasma kallikrein inhibitor approved for prophylaxis of hereditary angioedema (HAE) attacks in patients 12 years or older. OBJECTIVE: This analysis examined the safety and effectiveness of long-term prophylaxis with berotralstat. METHODS: APeX-2 was a phase 3, parallel-group, multicenter trial in patients with HAE caused by C1-inhibitor deficiency (NCT03485911). Part 1 was a randomized, double-blind, placebo-controlled evaluation of 150 and 110 mg of berotralstat over 24 weeks. In part 2, berotralstat-treated patients continued the same treatment, and placebo-treated patients were re-randomized to 150 or 110 mg of berotralstat for 24 weeks. In part 3, all patients were treated with open-label berotralstat at 150 mg, which could be continued for up to an additional 4 years. In part 3, the primary endpoint was long-term safety and tolerability. Secondary endpoints included HAE attack rates and quality of life (QoL). RESULTS: Eighty-one patients entered part 3. Treatment-emergent adverse events (TEAEs) occurred in 82.7% of patients, with most being mild or moderate in severity. The most common TEAEs were nasopharyngitis, urinary tract infection, abdominal pain, arthralgia, coronavirus infection, and diarrhea. Drug-related TEAEs occurred in 14.8% of patients, but none were serious. For patients who completed 96 weeks of berotralstat treatment (n = 70), the mean (standard error) change in attack rate from baseline was -2.21 (0.20) attacks/mo. Clinically meaningful improvements in QoL were also observed, with the largest improvements in the functioning domain. CONCLUSION: Berotralstat was generally well tolerated, provided rapid and sustained reductions in HAE attacks and improved QoL over 96 weeks.
Assuntos
Angioedemas Hereditários , Pirazóis , Humanos , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/prevenção & controle , Proteína Inibidora do Complemento C1/uso terapêutico , Método Duplo-Cego , Qualidade de Vida , Resultado do TratamentoRESUMO
Atmospheric particulate matter (PM) perturbs hematological homeostasis by targeting the plasma kallikrein-kinin system (KKS), causing a cascade of zymogen activation events. However, the causative components involved in PM-induced hematological effects are largely unknown. Herein, the standard reference materials (SRMs) of atmospheric PM, including emissions from the diesel (2975), urban (1648a), and bituminous coal (2693), were screened for their effects on plasma KKS activation, and the effective constituent contributing to PM-induced KKS activation was further explored by fraction isolation and chemical analysis. The effects of three SRMs on KKS activation followed the order of 2975 > 1648a > 2693, wherein the fractions of 2975 isolated by acetone and water, together with the insoluble particulate residues, exerted significant perturbations in the hematological homeostasis. The soot contents in the SRMs and corresponding isolated fractions matched well with their hematological effects, and the KKS activation could be dependent on the soot surface oxidation degree. This study, for the first time, uncovered the soot content in atmospheric PM with different origins contributed to the distinct effects on plasma KKS activation. The finding would be of utmost importance for the health risk assessment on inhaled airborne fine PM, given its inevitable contact with human circulatory system.
Assuntos
Poluentes Atmosféricos , Sistema Calicreína-Cinina , Material Particulado , Humanos , Sistema Calicreína-Cinina/fisiologia , Fuligem , Poluentes Atmosféricos/análiseRESUMO
BACKGROUND: We examined how prekallikrein (PK) activation on human microvascular endothelial cells (HMVECs) is regulated by the ambient concentration of C1 inhibitor (C1INH) and prolylcarboxypeptidase (PRCP). OBJECTIVE: We sought to examine the specificity of PK activation on HMVECs by PRCP and the role of C1INH to regulate it, high-molecular-weight kininogen (HK) cleavage, and bradykinin (BK) liberation. METHODS: Investigations were performed on cultured HMVECs. Immunofluorescence, enzymatic activity assays, immunoblots, small interfering RNA knockdowns, and cell transfections were used to perform these studies. RESULTS: Cultured HMVECs constitutively coexpressed PK, HK, C1INH, and PRCP. PK activation on HMVECs was modulated by the ambient C1INH concentration. In the absence of C1INH, forming PKa on HMVECs cleaved 120-kDa HK completely to a 65-kDa H-chain and a 46-kDa L-chain in 60 minutes. In the presence of 2 µM C1INH, only 50% of the HK became cleaved. C1INH concentrations (0.0-2.5 µM) decreased but did not abolish BK liberated from HK by activated PK. Factor XII did not activate when incubated with HMVECs alone for 1 hour. However, if incubated in the presence of HK and PK, factor XII became activated. The specificity of PK activation on HMVECs by PRCP was shown by several inhibitors to each enzyme. Furthermore, PRCP small interfering RNA knockdowns magnified C1INH inhibitory activity on PK activation, and PRCP transfections reduced C1INH inhibition at any given concentration. CONCLUSIONS: These combined studies indicated that on HMVECs, PK activation and HK cleavage to liberate BK were modulated by the local concentrations of C1INH and PRCP.
Assuntos
Fator XII , Pré-Calicreína , Humanos , Células Endoteliais , Bradicinina/farmacologia , Cininogênio de Alto Peso Molecular , RNA Interferente Pequeno/genéticaRESUMO
BACKGROUND: Despite high risk of venous thromboembolism (VTE) in patients with pancreatic cancer, there are little data on contact system activation in these patients. OBJECTIVES: To quantify contact system and intrinsic pathway activation and subsequent VTE risk in patients with pancreatic cancer. METHODS: Patients with advanced pancreatic cancer were compared with controls. Blood was drawn at baseline and patients were followed for 6 months. Complexes of proteases with their natural inhibitors, C1-esterase inhibitor (C1-INH), antithrombin (AT), or alpha-1 antitrypsin (α1at), were measured for complexes containing kallikrein (PKa:C1-INH), factor (F)XIIa (FXIIa:C1-INH), and FXIa (FXIa:C1-INH, FXIa:AT, FXIa:α1at). The association of cancer with complex levels was assessed in a linear regression model, adjusted for age, sex, and body mass index. In a competing risk regression model, we assessed associations between complex levels and VTE. RESULTS: One hundred nine patients with pancreatic cancer and 22 controls were included. The mean age was 66 years (SD, 8.4) in the cancer cohort and 52 years (SD, 10.1) in controls. In the cancer cohort, 18 (16.7%) patients developed VTE during follow-up. In the multivariable regression model, pancreatic cancer was associated with increased complexes of PKa:C1-INH (P < .001), FXIa:C1-INH (P < .001), and FXIa:AT (P < .001). High FXIa:α1at (subdistribution hazard ratio, 1.48 per log increase; 95% CI, 1.02-2.16) and FXIa:AT (subdistribution hazard ratio, 2.78 highest vs lower quartiles; 95% CI, 1.10-7.00) were associated with VTE. CONCLUSION: Complexes of proteases with their natural inhibitors were elevated in patients with cancer. These data suggest that the contact system and intrinsic pathway activation are increased in patients with pancreatic cancer.
Assuntos
Neoplasias Pancreáticas , Tromboembolia Venosa , Idoso , Feminino , Humanos , Masculino , Anticoagulantes , Antitrombina III , Endopeptidases , Calicreínas , Estudos Prospectivos , Tromboembolia Venosa/diagnóstico , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Patients with hereditary angioedema experience recurrent, sometimes life-threatening, attacks of edema. It is a rare genetic disorder characterized by genetic and clinical heterogenicity. Most cases are caused by genetic variants in the SERPING1 gene leading to plasma deficiency of the encoded protein C1 inhibitor (C1INH). More than 500 different hereditary angioedema-causing variants have been identified in the SERPING1 gene, but the disease mechanisms by which they result in pathologically low C1INH plasma levels remain largely unknown. OBJECTIVES: The aim was to describe trans-inhibitory effects of full-length or near full-length C1INH encoded by 28 disease-associated SERPING1 variants. METHODS: HeLa cells were transfected with expression constructs encoding the studied SERPING1 variants. Extensive and comparative studies of C1INH expression, secretion, functionality, and intracellular localization were carried out. RESULTS: Our findings characterized functional properties of a subset of SERPING1 variants allowing the examined variants to be subdivided into 5 different clusters, each containing variants sharing specific molecular characteristics. For all variants except 2, we found that coexpression of mutant and normal C1INH negatively affected the overall capacity to target proteases. Strikingly, for a subset of variants, intracellular formation of C1INH foci was detectable only in heterozygous configurations enabling simultaneous expression of normal and mutant C1INH. CONCLUSIONS: We provide a functional classification of SERPING1 gene variants suggesting that different SERPING1 variants drive the pathogenicity through different and in some cases overlapping molecular disease mechanisms. For a subset of gene variants, our data define some types of hereditary angioedema with C1INH deficiency as serpinopathies driven by dominant-negative disease mechanisms.
Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Humanos , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/metabolismo , Angioedemas Hereditários/genética , Células HeLa , Endopeptidases , Peptídeo HidrolasesRESUMO
Mammalian plasma kallikrein (PK) and coagulation factor XI (fXI) are serine proteases that play in the kinin-kallikrein cascade and in the blood clotting pathway. These proteases share sequence homology and have four apple domains (APDs) and a serine protease domain (SPD) from their N-terminus to C-terminus. No homologs of these proteases are believed to be present in fish species, except for lobe-finned fish. Fish, however, have a unique lectin, named kalliklectin (KL), which is composed of APDs only. In the present study, we found genomic sequences encoding a protein with both APDs and SPD in a few cartilaginous and bony fishes, including the channel catfish Ictalurus punctatus, using bioinformatic analysis. Furthermore, we purified two ~ 70 kDa proteins from the blood plasma of the catfish using mannose-affinity and gel filtration chromatography sequentially. Using de novo sequencing with quadrupole time-of-flight tandem mass spectrometry, several internal amino acid sequences in these proteins were mapped onto possible PK/fXI-like sequences that are thought to be splicing variants. Exploration of APD-containing proteins in the hagfish genome database and phylogenetic analysis suggested that the PK/fXI-like gene originated from hepatocyte growth factor, and that the gene was acquired in a common ancestor of jawed fish. Synteny analysis provided evidence for chromosomal translocation around the PK/fXI-like locus that occurred in the common ancestor of holosteans and teleosts after separation from the lobe-finned fish lineage, or gene duplication into two chromosomes, followed by independent gene losses. This is the first identification of PK/fXI-like proteins in teleosts.
Assuntos
Ictaluridae , Calicreína Plasmática , Animais , Ictaluridae/genética , Lectinas , Fator XI/genética , Fator XI/química , Filogenia , MamíferosRESUMO
BACKGROUND: Venous thromboembolism (VTE) is associated with excessive coagulation activity, which in part can be attributed to activation of contact system. However, the knowledge regarding the impact of contact activation in acute VTE is limited. OBJECTIVE: To unravel the involvement of contact activation in acute VTE. METHODS: Contact activation was investigated in patients with acute VTE (n = 321) and population controls without a history of VTE (n = 300). For comparison, Factor XI(a) levels, activity, and plasma kallikrein (PKa) activity were determined in plasma samples with an activated partial thromboplastin time- or thrombin generation-based assay (free FXI concentration [FXI:c] and calibrated automated thrombogram:FXIa, respectively) and with enzyme-linked immunosorbent assays for enzyme-inhibitor complexes (FXIa:alpha-1-antitrypsin [α1AT], FXIa:antithrombin [AT], FXIa:C1-inhibitor [C1Inh], and PKa:C1-inh). RESULTS: In patients with VTE, higher FXI:c levels (124 ± 37% vs 114 ± 28%), but lower calibrated automated thrombogram:FXIa levels were apparent. This was accompanied by increased FXIa:α1AT, FXIa:AT, and PKa:C1-inh levels in patients compared with controls (312pM [238-424] vs 203pM [144-288]; 29pM [23-38] vs 23pM [20-30]; 1.9nM [1.2-4.7] vs 1.4nM [0.7-3.5], respectively), whereas FXIa:C1-inh levels did not differ. Logistic regression models showed good discriminatory values for FXI:c and FXIa:α1AT (area under the curve = 0.64 [0.6/0.69] and 0.73 [0.69/0.77], respectively). After a 2-year follow-up, 81 recurrent VTE events or deaths occurred in the patient cohort, for which the baseline levels of FXIa:α1AT and FXIa:C1Inh had a significant prognostic value (Hazard ratios per SD [95% CI], 1.26 [1.10-1.45]; p =.0012 and 1.19 [1.05-1.36]; p =.0082, respectively). CONCLUSION: Our study revealed elevated FXIa levels and activity in acute VTE, which was also associated with recurrent VTE, suggesting an important risk contribution of FXI activation to VTE. The evidence provided by this study supports the utility of FXIa inhibition in the setting of acute VTE.
Assuntos
Tromboembolia Venosa , Trombose Venosa , Humanos , Fator XIa , Tromboembolia Venosa/diagnóstico , Fator XI , Coagulação Sanguínea , Calicreína Plasmática , Anticoagulantes , Antitrombina IIIRESUMO
Monoclonal antibodies (mAbs) have been shown to be effective and generally safe across a continually expanding list of therapeutic areas. We describe the advantages and limitations of mAbs as a therapeutic option compared with small molecules. Specifically, we discuss a novel mAb in the treatment of hereditary angioedema (HAE), a rare and potentially life-threatening condition characterized by recurrent unpredictable swelling attacks. HAE is mediated by dysregulation of plasma kallikrein activity leading to overproduction of bradykinin. Current prophylactic treatment for HAE includes androgens or replacement of the endogenous plasma kallikrein inhibitor, C1 inhibitor. However, there remains an unmet need for an effective, less burdensome treatment option. Lanadelumab is a fully human mAb targeting plasma kallikrein. Results from clinical trials, including a pivotal Phase 3 study and its ensuing open-label extension study, demonstrated that lanadelumab is associated with few treatment-related adverse events and reduced the rate of HAE attacks. This novel treatment option has the potential to significantly improve the lives of patients with HAE.
Assuntos
Angioedemas Hereditários , Anticorpos Monoclonais , Humanos , Anticorpos Monoclonais/uso terapêutico , Calicreína Plasmática , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/prevenção & controle , Resultado do Tratamento , Proteína Inibidora do Complemento C1/uso terapêutico , Bradicinina/uso terapêuticoRESUMO
Hereditary angioedema (HAE) is a rare and potentially life-threatening disease that affects an estimated 1 in 50,000 individuals worldwide. Berotralstat (BCX7353) is the only small molecule approved by the US Food and Drug Administration (FDA) for the prophylactic treatment of HAE attacks in patients 12 years and older. During the discovery of BCX7353, we also identified a novel series of small molecules containing a quaternary carbon as potent and orally bioavailable Plasma Kallikrein (PKal) inhibitors. Lead compound was identified as a potent inhibitor following a detailed lead optimization process that balanced the lipophilic efficiency (LipE) and pharmacokinetic (PK) profile.
Assuntos
Angioedemas Hereditários , Calicreína Plasmática , Angioedemas Hereditários/tratamento farmacológico , Angioedemas Hereditários/prevenção & controle , Antivirais/uso terapêutico , Carbono , Humanos , Estados UnidosRESUMO
Sebetralstat is an investigational oral plasma kallikrein inhibitor for the on-demand treatment of hereditary angioedema. Six healthy male participants received one dose of 600 mg (540 µCi) [14C]-sebetralstat. Plasma concentrations of sebetralstat and levels of total radioactivity in plasma, urine, and faeces were determined. Metabolite profiles of radioactivity were generated, and major metabolites structurally characterised.Radioactivity was rapidly absorbed and was excreted with a mean of 95.8% (63.4% faeces; 32.4% urine) recovered by 216 h. Sebetralstat was the major drug-related component in urine and faeces, although metabolism predominated overall (main metabolites: M19 (des-[methoxy-fluoro-methylpyridine]-sebetralstat), M10 (N-des-pyridone-sebetralstat-carboxylic acid), M3 (pyridine O-desmethyl-sebetralstat), and M34 (pyridine dioxy-dihydro-sebetralstat)). Sebetralstat was the main radiolabelled component in plasma (mean of 64.1% of the total radioactivity AUC0-24), followed by relatively low proportions of metabolites: M19 (7.10%), M3 (4.01%), and M10 (4.00%). Although M19 was >10% of the plasma radioactivity AUC0-24, in one participant it comprised a mean of <10% of AUC0-24. Plasma levels of M19 were measured at the NOAEL dose in a rat toxicology study, where higher exposure was observed vs. that in humans.Given these findings and the lack of pharmacological activity of M19, it was concluded that there was no unique or disproportionate circulating metabolite in humans.
Assuntos
Humanos , Masculino , Animais , RatosRESUMO
We aimed to determine the biomarker performance of the proteolytic enzymes cathepsin B (Cat B) and plasma kallikrein (PKa) and transforming growth factor (TGF)-ß to detect hepatic fibrosis (HF) in chronic hepatitis C (CHC) patients. We studied 53 CHC patients and 71 healthy controls (HCs). Hepatic-disease stage was determined by liver biopsies, aminotransferase:platelet ratio index (APRI) and Fibrosis (FIB)4. Hepatic inflammation and HF in CHC patients were stratified using the METAVIR scoring system. Cat-B and PKa activities were monitored fluorometrically. Serum levels of TGF-ß (total and its active form) were determined using ELISA-like fluorometric methods. Increased serum levels of Cat B and PKa were found (p < 0.0001) in CHC patients with clinically significant HF and hepatic inflammation compared with HCs. Levels of total TGF-ß (p < 0.0001) and active TGF-ß (p < 0.001) were increased in CHC patients compared with HCs. Cat-B levels correlated strongly with PKa levels (r = 0.903, p < 0.0001) in CHC patients but did not correlate in HCs. Levels of Cat B, PKa and active TGF-ß increased with the METAVIR stage of HF. Based on analyses of receiver operating characteristic (ROC) curves, Cat B and PKa showed high diagnostic accuracy (area under ROC = 0.99 ± 0.02 and 0.991 ± 0.007, respectively) for distinguishing HF in CHC patients from HCs. Taken together, Cat B and PKa could be used as circulating biomarkers to detect HF in HCV-infected patients.