RESUMO
KEY MESSAGE: The Bacillus thuringiensis (Bt) cry3Bb gene was successfully introduced into poplar plastid genome, leading to transplastomic poplar with high mortality to Plagiodera versicolora. Poplar (Populus L.) is one of the main resource of woody industry, but being damaged by insect pests. The feasibility and efficiency of plastid transformation technology for controlling two lepidopteran caterpillars have been demonstrated previously. Here, we introduced B. thuringiensis (Bt) cry3Bb into poplar plastid genome by biolistic bombardment for controlling P. versicolora, a widely distributed forest pest. Chimeric cry3Bb gene is controlled by the tobacco plastid rRNA operon promoter combined with the 5'UTR from gene10 of bacteriophage T7 (NtPrrn:T7g10) and the 3'UTR from the E. coli ribosomal RNA operon rrnB (TrrnB). The integration of transgene and homoplasmy of transplastomic poplar plants was confirmed by Southern blot analysis. Northern blot analysis indicated that cry3Bb was transcribed to both read through and shorter length transcripts in plastid. The transplastomic poplar expressing Cry3Bb insecticidal protein showed the highest accumulation level in young leaves, which reach up to 16.8 µg/g fresh weight, and comparatively low levels in mature and old leaves. Feeding the young leaves from Bt-Cry3Bb plastid lines to P. versicolora caused 100% mortality in the first-instar larvae after only 1 day, in the second-instar larvae after 2 days, and in the third-instar larvae for 3 days. Thus, we report a successful extension of plastid engineering poplar against the chrysomelid beetle.
Assuntos
Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/metabolismo , Besouros/fisiologia , Endotoxinas/metabolismo , Comportamento Alimentar , Proteínas Hemolisinas/metabolismo , Folhas de Planta/parasitologia , Plastídeos/metabolismo , Populus/genética , Populus/parasitologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Besouros/efeitos dos fármacos , Endotoxinas/toxicidade , Comportamento Alimentar/efeitos dos fármacos , Vetores Genéticos/metabolismo , Genomas de Plastídeos , Proteínas Hemolisinas/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Fenótipo , Plantas Geneticamente Modificadas , Transformação GenéticaRESUMO
Plastid transformation technology has several attractive features compared with traditional nuclear transformation technology. However, only a handful of species are able to be successfully transformed. Here, we report an efficient and stable plastid transformation protocol for poplar, an economically important tree species grown worldwide. We transformed the Bacillus thuringiensis cry1C gene into the poplar plastid genome, and homoplasmic transplastomic poplar was obtained after two to three rounds of regeneration under antibiotic selection for 7-12 months. The transplastomic poplar expressing Cry1C insecticidal protein showed the highest accumulation level in young leaves, which reached up to 20.7 µg g-1 fresh weight, and comparatively low levels in mature and old leaves, and hardly detectable levels in non-green tissues, such as phloem, xylem and roots. Transplastomic poplar showed high toxicity to Hyphantria cunea and Lymantria dispar, two notorious forest pests worldwide, without affecting plant growth. These results are the first successful examples of insect-resistant poplar generation by plastid genome engineering and provide a new avenue for future genetic improvement of poplar plants.