Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
J Environ Sci (China) ; 147: 550-560, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003070

RESUMO

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 104 ng/m3), total suspended particulate (TSP) (mean= 4.33 × 103 ng/m3) and soil (mean= 4.37 × 103 ng/g) in this subarea had 1.76-6.19 times higher levels than those from other subareas of this facility, surrounding residential areas and reference areas, indicating that petroleum refining processes would lead apparent derivation of PAHs. Especially, compared with those in residential and reference areas, gas samples in the petrochemical areas had higher ∑NPAH/∑PAHs (mean=2.18), but lower ∑Cl-PAH/∑PAHs (mean=1.43 × 10-1) and ∑Br-PAH/∑PAHs ratios (mean=7.49 × 10-2), indicating the richer nitrification of PAHs than chlorination during petrochemical process. The occupational exposure to PAHs and XPAHs in this petroleum refinery facility were 24-343 times higher than non-occupational exposure, and the ILCR (1.04 × 10-4) for petrochemical workers was considered to be potential high risk. Furthermore, one expanded high-resolution screening through GC Orbitrap/MS was performed for soils from petrochemical area, and another 35 PAHs were found, including alkyl-PAHs, phenyl-PAHs and other species, indicating that profiles and risks of PAHs analogs in petrochemical areas deserve further expanded investigation.


Assuntos
Monitoramento Ambiental , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Petróleo/análise , Humanos , Indústria de Petróleo e Gás , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Medição de Risco
2.
Front Public Health ; 12: 1392813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171318

RESUMO

Background: Polycyclic aromatic hydrocarbons (PAHs), as organic pollutants widely present in daily environments, have been shown by existing epidemiological studies to be significantly associated with deficits in learning and memory functions in children and adults. However, the association between exposure to PAHs and cognitive function in older adults remains unclear. Additionally, existing related studies have only assessed the association between individual PAH exposures and cognitive assessments, overlooking the risks posed by mixed exposures. This study aims to use three statistical models to investigate the individual and overall effects of mixed PAH exposures on the cognition of older adults in the United States. Methods: The study cohort was obtained from the NHANES database, which included individuals aged 60 and older from 2011 to 2014. Weighted generalized linear models (GLM), weighted quantile sum (WQS) models, and Bayesian kernel machine regression (BKMR) models were utilized to evaluate the connections between urinary PAH metabolites and the standardized Z-scores of four cognitive tests: Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution Test (DSST). Results: Our analysis involved 899 individuals aged 60 and above. In the fully adjusted GLM, 2-hydroxynaphthalene (2-OHNa), 3-hydroxyfluorene (3-OHFlu), and 2-hydroxyfluorene (2-OHFlu) demonstrated negative associations with DSST Z-scores. In the WQS model, six urinary PAH metabolites were negatively linked to AFT Z-scores (ß (95% confidence intervals [CI]): -0.120 (-0.208, -0.033), p = 0.007) and DSST Z-scores (ß (95% CI): -0.182 (-0.262, -0.103), p < 0.001). In both assessments, 2-OHNa exerted the greatest influence among the urinary PAH metabolites. In the BKMR model, there was an overall negative correlation between urinary PAH metabolites and AFT and DSST Z-scores when the concentration was within the 25th to 75th percentile, where 2-OHNa dominated the main effect of the mixture. The WQS and BKMR models were adjusted for all covariates. Conclusion: Increased concentrations of urinary PAH metabolites are associated with cognitive decline in older adults, mainly on language ability, executive function, sustained attention, working memory, and information processing speed, with 2-OHNa playing a major effect.


Assuntos
Cognição , Inquéritos Nutricionais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Masculino , Feminino , Hidrocarbonetos Policíclicos Aromáticos/urina , Idoso , Estados Unidos , Pessoa de Meia-Idade , Exposição Ambiental , Poluentes Ambientais/urina , Estudos de Coortes , Idoso de 80 Anos ou mais
3.
Mar Pollut Bull ; 207: 116876, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173474

RESUMO

This study investigated dissolved PAHs and OCPs in Quanzhou Bay estuaries, assessed their ecological risk, and examined anthropogenic impacts on contaminant distribution. Results showed that dissolved ∑24PAH concentrations ranged from 117 to 709 ng/L (mean: 358 ng/L), with dominance of 2-ring PAHs (Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene). Dissolved DDT levels ranged from 0.06 to 0.49 ng/L (mean: 0.28 ng/L), while HCBz concentrations varied from 0.02 to 0.44 ng/L (mean: 0.20 ng/L). PAHs were higher in the north due to urbanization and transport, while OCPs showed higher levels in the south due to historical agricultural use. Rural areas, water bodies, and wetlands significantly influenced the behavior of PAHs according to Spearman correlation and lasso regression analyses. Quanzhou Bay was categorized as a low to medium risk area based on dispersion simulation and ecological risk assessment, highlighting implications for future sustainable development and policy planning. CAPSULE: The coupled relationship between human activities and the distribution of dissolved PAHs and OCPs in urbanized estuaries was explored using statistical methods and GIS technology, providing valuable insights into environmental processes and pollutant control policies.

4.
Food Sci Biotechnol ; 33(10): 2399-2415, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39145124

RESUMO

The levels of acrylamide (AA), four polycyclic aromatic hydrocarbons (PAH4), and heterocyclic aromatic amines (HAAs) in 184 air-fried agricultural, fishery, and animal products were measured using GC-MS and UPLC-MS/MS. Among the tested samples, sea algae exhibited the highest levels of PAH4 and eight specific HAAs (HAA8), while root and tuber crops had the greatest amount of AA. Agricultural and fisheries products had higher levels of all three contaminants, while livestock products had an inverse correlation between PAH4 and HAA8. The margin of exposure in the Korean population is considered "unlikely a concern" for all samples for PAH4 and HAA8, however, that for AA in cereal, vegetable, and root and tuber crops is deemed "may be a concern", with a value < 10,000 in all age groups. These findings suggest a need to evaluate dietary AA exposure in certain food categories and further research to minimize AA formation during air frying. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01639-4.

5.
Ecotoxicol Environ Saf ; 284: 116868, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39146592

RESUMO

Many studies have indicated that individual exposure to phthalates (PAEs) or polycyclic aromatic hydrocarbons (PAHs) affects pregnancy outcomes. However, combined exposure to PAEs and PAHs presents a more realistic situation, and research on the combined effects of PAEs and PAHs on gestational age and newborn size is still limited. This study aimed to assess the effects of combined exposure to PAEs and PAHs on neonatal gestational age and birth size. Levels of 9 PAE and 10 PAH metabolites were measured from the urine samples of 1030 women during early pregnancy from the Zunyi Birth Cohort in China. Various statistical models, including linear regression, restricted cubic spline, Bayesian kernel machine regression, and quantile g-computation, were used to study the individual effects, dose-response relationships, and combined effects, respectively. The results of this prospective study revealed that each ten-fold increase in the concentration of monoethyl phthalate (MEP), 2-hydroxynaphthalene (2-OHNap), 2-hydroxyphenanthrene (2-OHPhe), and 1-hydroxypyrene (1-OHPyr) decreased gestational age by 1.033 days (95 % CI: -1.748, -0.319), 0.647 days (95 % CI: -1.076, -0.219), 0.845 days (95 % CI: -1.430, -0.260), and 0.888 days (95 % CI: -1.398, -0.378), respectively. Moreover, when the concentrations of MEP, 2-OHNap, 2-OHPhe, and 1-OHPyr exceeded 0.528, 0.039, 0.012, and 0.002 µg/g Cr, respectively, gestational age decreased in a dose-response manner. Upon analyzing the selected PAE and PAH metabolites as a mixture, we found that they were significantly negatively associated with gestational age, birth weight, and the ponderal index, with 1-OHPyr being the most important contributor. These findings highlight the adverse effects of single and combined exposure to PAEs and PAHs on gestational age. Therefore, future longitudinal cohort studies with larger sample sizes should be conducted across different geographic regions and ethnic groups to confirm the impact of combined exposure to PAEs and PAHs on birth outcomes.

6.
Environ Pollut ; : 124717, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147225

RESUMO

The domestic combustion of locally sourced smoky (bituminous) coal in Xuanwei and Fuyuan counties, China, is responsible for some of the highest lung cancer rates in the world. Recent research has pointed to methylated PAHs (mPAHs), particularly 5-methylchrysene (5MC), within coal combustion products as a driving factor. Here we describe measurements of mPAHs in Xuanwei and Fuyuan derived from controlled burnings (i.e., water boiling tests, WBT, n = 27) representing exposures during stove use, and an exposure assessment (EA) study (n=116) representing 24 h weighted exposures. Using smoky coal leads to significantly higher concentrations of known and likely human carcinogens than using smokeless coal, including 5MC (3.7 ng/m3 vs. 1.0 ng/m3 for EA samples and 100.8 ng/m3 vs. 2.2 ng/m3 for WBT samples), benzo[a]pyrene (38.0 ng/m3 vs. 7.9 ng/m3 for EA samples and 455.3 ng/m3 vs. 12.0 ng/m3 for WBT samples), and 7,12-dimethylbenz[a]anthracene (1.9 ng/m3 vs. 0.2 ng/m3 for EA samples and 47.7 ng/m3 vs. 0.6 ng/m3 for WBT samples). Mixed effect models for both EA samples and WBT samples revealed clear variation in mPAHs concentrations depending on smoky coal source while stove ventilation was consistently found to reduce measured concentrations (by up to nine fold and 65 fold for EA and WBT samples respectively when using smoky coal). Fuel type had a larger influence on mPAHs concentrations than stove type. These findings indicate that users of smoky coal experience exposure to many PAHs, including known and suspected human carcinogens (especially during cooking activities), many of which are not routinely tested for. Collectively, this provides insights into the potential etiologies of lung cancer in the region and further highlights the importance of clean fuel transitions and stove refinements as the final goal for reducing household air pollution and its associated health risks.

7.
J Hazard Mater ; 478: 135504, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39154473

RESUMO

Oil spills from pipeline accidents can result in long-lasting health effect in the people living in a polluted region . In this study, the level of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs ) and heavy metals (HMs) have been analyzed in environmental matrices of a region with frequent oil pipeline accidents in Iran . The results showed that the mean concentration of ΣPAHs and ΣHMs decreased from the upstream to the downstream and also the levels were higher in the wet season than those in the dry season. The average concentration of HMs in sediments was higher than that in other environments. The 3-ring and 4-ring PAHs were dominant in all of the studied matrices with the average values of 32.61 % and 45.85 %, respectively. The ecological risks of PAHs and HMs were medium and high in all matrices, respectively. In wet season, the total cancer risk (TCR) related to PAHs in agricultural soil was greater than 10-4, whereas it's very close to the threshold for HMs in water. This study offers a reference for assessing the long-term impact of oil spills in contaminated environmental matrices. The results are crucial for developing effective strategies to mitigate oil pollution impacts and protect environmental and public health.

8.
Mar Pollut Bull ; 207: 116833, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39159572

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are characterized with high KOW values, which lead to their recalcitrant nature, bioaccumulation, and biotoxicity, adversely affects the environment. Passive samplers (PS) have proven effective in measuring bioavailable PAH concentrations for toxicity assessments. In this study, we used low-density polyethylene (LDPE) to measure freely dissolved PAH concentrations (Cfree) in Kentucky Lake (KL) and Ohio River (OH), USA. PAHs toxicity potential in sediment was assessed using equilibrium partitioning sediment benchmarks toxic units (ESBTUs) and the interstitial water toxic units (IWTUs) that were derived from OC-normalized concentration (COC) and Cfree, respectively. The Cfree in April and June were 127 and 97 times higher in OH than in KL, respectively. Moreover, ESBTUs were higher in both the KL and OH compared to the IWTUs, suggesting that ESBTUs overestimate the toxicity potential to organisms. These results indicate that PS provides a reliable method for assessing the toxicity potential in sediments.

9.
Environ Health ; 23(1): 68, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138494

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) have been linked to adverse birth outcomes that have been reported to be induced by oxidative stress, but few epidemiological studies to date have evaluated associations between urinary PAH metabolites and oxidative stress biomarkers in pregnancy and identified critical periods for these outcomes and PAH exposures in pregnancy. METHODS: A cohort of pregnant women was recruited early in pregnancy from antenatal clinics at the University of California Los Angeles during 2016-2019. We collected urine samples up to three times during pregnancy in a total of 159 women enrolled in the cohort. A total of 7 PAH metabolites and 2 oxidative stress biomarkers [malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)] were measured in all available urine samples. Using multiple linear regression models, we estimated the percentage change (%) and 95% confidence interval (CI) in 8-OHdG and MDA measured at each sample collection time per doubling of PAH metabolite concentrations. Furthermore, we used linear mixed models with a random intercept for participant to estimate the associations between PAH metabolite and oxidative stress biomarker concentrations across multiple time points in pregnancy. RESULTS: Most PAH metabolites were positively associated with both urinary oxidative stress biomarkers, MDA and 8-OHdG, with stronger associations in early and late pregnancy. A doubling of each urinary PAH metabolite concentration increased MDA concentrations by 5.8-41.1% and 8-OHdG concentrations by 13.8-49.7%. Linear mixed model results were consistent with those from linear regression models for each gestational sampling period. CONCLUSION: Urinary PAH metabolites are associated with increases in oxidative stress biomarkers during pregnancy, especially in early and late pregnancy.


Assuntos
Biomarcadores , Estresse Oxidativo , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Feminino , Hidrocarbonetos Policíclicos Aromáticos/urina , Los Angeles , Gravidez , Adulto , Biomarcadores/urina , Adulto Jovem , Poluentes Ambientais/urina , 8-Hidroxi-2'-Desoxiguanosina/urina , Estudos de Coortes , Exposição Materna/efeitos adversos , Malondialdeído/urina
10.
Environ Toxicol Pharmacol ; 110: 104538, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159907

RESUMO

In Ulaanbaatar roughly 60 % of the population live in traditional Mongolian yurts in the so-called Ger districts of the city. Winter indoor air quality is a serious concern in these districts as about 98 % of households consume solid fossil fuel (mainly coal). In our study, indoor air quality was assessed based on PAHs analysis and ecotoxicity testing of 24-hour samples collected in 4 yurts. Three of the selected yurts were equipped with conventional while the fourth one with improved stoves. Analysis of PAHs profiles showed the prevalence of higher molecular weight PAHs in all yurts. Concentrations of the 5-ring benzo(b)fluoranthene and 6-ring benzo(g.h.i)perylene were extremely high in one yurt using conventional stove, 8430 µg g-1 and 6320 µg g-1, respectively. Ecotoxicity of the samples was assessed using the kinetic version of the Vibrio fischeri bioluminescence inhibition bioassay. In concordance with PAHs concentrations, ecotoxicity was also the highest in that yurt.

11.
Heliyon ; 10(15): e35614, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165972

RESUMO

There is an emerging body of evidence concerning the neurological effect of air pollutants on cognitive function and increased risk of neurodegeneration. Although previous studies have suggested that polycyclic aromatic hydrocarbons (PAHs) are neurotoxic, the effect of PAHs exposure on neurodegeneration remains unclear. This study aimed to investigate the association between PAH exposure and the risk of developing amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). For this matched case-control cross-sectional study, we recruited patients aged ≥50 years diagnosed with aMCI and AD from the Samsung Medical Center, Seoul, Korea, between 2014 and 2019. For each patient, we randomly selected four cognitively healthy controls through frequency matching based on sex, age group, and education level. Urinary levels of four PAH metabolites, 1-hydroxypyrene (1-OHP), 1-hydroxyphenanthrene (1-OHPhe), 2-hydroxyfluorene (2-OHFlu), and 2-naphthol (2-NAP), were measured. A conditional logistic regression model was used to evaluate the association, adjusting for potential confounders. A total of 212 patients with aMCI with 848 matched controls, and 267 patients with AD with 1068 matched controls were included in the analyses to estimate the risk of PAH exposure. We found that elevated urinary levels of PAH metabolites (specifically, 1-OHP and 2-NAP) were significantly associated with an increased risk of aMCI and AD. An increase of one unit in log-transformed level of urinary 1-OHP was associated with a 1.15- and 1.16-times higher risk of aMCI and AD, respectively. An increase of one unit in log-transformed level of urinary 2-NAP was associated with a 1.11- and 1.13-times higher risk of aMCI and AD, respectively. These findings indicate that PAH exposure may increase the risk of aMCI and AD, especially for the elderly population. Considering the widespread distribution of PAHs in the environment, reducing PAH exposure may be an effective strategy for the prevention of neurodegenerative diseases.

12.
Environ Pollut ; 360: 124664, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39098642

RESUMO

A few studies found polycyclic aromatic hydrocarbons (PAHs) were associated with serum uric acid (SUA) or hyperuricemia (HUA). However, the longitudinal study is vacant, and the underlying mechanisms remain unclear. We aimed to assess the cross-sectional and longitudinal associations of urinary PAHs metabolites with SUA levels and HUA risk, and explore the mediating effects of oxidative stress and inflammation. 10 urinary mono-hydroxylated PAHs metabolites and SUA levels were measured among 4047 Chinese urban residents at baseline and 1496 individuals at 6-year follow-up. Biomarkers of oxidative damage and inflammation in urine/plasma were determined at baseline. We adopted generalized linear mixed models and logistic regression to assess the associations of PAHs metabolites with SUA and HUA, weighted quantile sum regression and adaptive elastic net regression to evaluate the overall effects of multi-PAHs mixture, and mediation analysis to estimate the mediating roles of the biomarkers. In the cross-sectional study, each 1-unit increase in the ln-transformed values of 2-OHNa, 2-OHFlu, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 4.10-, 3.90-, 6.42-, 7.33-, 4.85-, 5.43-, 4.47-, 7.67-, and 5.22-µmol/L increase in SUA, respectively. Meanwhile, each 1-unit increase in the ln-transformed values of 1-OHNa, 2-OHNa, 4-OHPh, 9-OHPh, 3-OHPh, 2-OHPh, ΣOHNa, ΣOHPh, and ΣOHPAHs was associated with a 17, 14, 15, 22, 14, 19, 18, 27, and 21% increment in HUA risk, respectively. After 6 years, individuals with persistent high level of 9-OHPh had a 12.5 µmol/L increase in SUA compared with those with persistent low level. The overall effects of multi-PAHs mixture on SUA and HUA remain positive. 8-hydroxy-deoxyguanosine mediated the associations of PAHs metabolites with SUA and HUA, and the mediated proportion ranged from 5.39% to 15.34%. PAHs exposure was associated with the elevated SUA levels and increased HUA risk, and oxidative DNA damage may be one of the underlying mechanisms.

13.
Environ Pollut ; 360: 124650, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111529

RESUMO

Although Benzo[a]pyrene (BaP) is considered carcinogenic to humans, the health effects of exposure to ambient levels have not been sufficiently investigated. This study estimated the long-term spatiotemporal variation of BaP in Japan over nearly two decades at a fine spatial resolution of 1 km. This study aimed to obtain an accurate spatiotemporal distribution of BaP that can be used in epidemiological studies on the health effects of ambient BaP exposure. The annual BaP concentrations were estimated using an ensemble machine learning approach using various predictors, including the concentrations and emission intensities of the criteria air pollutants, and meteorological, land use, and traffic-related variables. The model performance, evaluated by location-based cross-validation, exhibited satisfactory accuracy (R2 of 0.693). Densely populated areas showed higher BaP levels and greater temporal reduction, whereas BaP levels remained higher in some industrial areas. The population-weighted BaP in 2018 was 0.12 ng m-3, a decrease of approximately 70% from its 2000 value of 0.44 ng m-3, which was also reflected in the estimated excess number of lung cancer incidences. Accordingly, the proportion of BaP exposure below 0.12 ng m-3, which is the BaP concentration associated with an excess lifetime cancer risk of 10-5, reached 67% in 2018. Our estimates can be used in epidemiological studies to assess the health effects of BaP exposure at ambient concentrations.

14.
BMC Pulm Med ; 24(1): 386, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128985

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) and metals were associated with decreased lung function, but co-exposure effects and underlying mechanism remained unknown. METHODS: Among 1,123 adults from National Health and Nutrition Examination Survey 2011-2012, 10 urinary PAHs, 11 urinary metals, and peripheral white blood cell (WBC) count were determined, and 5 lung function indices were measured. Least absolute shrinkage and selection operator, Bayesian kernel machine regression, and quantile-based g-computation were used to estimate co-exposure effects on lung function. Mediation analysis was used to explore mediating role of WBC. RESULTS: These models demonstrated that PAHs and metals were significantly associated with lung function impairment. Bayesian kernel machine regression models showed that comparing to all chemicals fixed at median level, forced expiratory volume in 1 s (FEV1)/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25 and 75% decreased by 1.31% (95% CI: 0.72%, 1.91%), 231.62 (43.45, 419.78) mL/s, and 131.64 (37.54, 225.74) mL/s respectively, when all chemicals were at 75th percentile. In the quantile-based g-computation, each quartile increase in mixture was associated with 104.35 (95% CI: 40.67, 168.02) mL, 1.16% (2.11%, 22.40%), 294.90 (78.37, 511.43) mL/s, 168.44 (41.66, 295.22) mL/s decrease in the FEV1, FEV1/forced vital capacity, peak expiratory flow, and forced expiratory flow between 25% and 75%, respectively. 2-Hydroxyphenanthrene, 3-Hydroxyfluorene, and cadmium were leading contributors to the above associations. WBC mediated 8.22%-23.90% of association between PAHs and lung function. CONCLUSIONS: Co-exposure of PAHs and metals impairs lung function, and WBC could partially mediate this relationship. Our findings elucidate co-exposure effects of environmental mixtures on respiratory health and underlying mechanisms, suggesting that focusing on highly prioritized toxicants would effectively attenuate adverse effects.


Assuntos
Pulmão , Inquéritos Nutricionais , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/urina , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Pulmão/fisiopatologia , Pulmão/efeitos dos fármacos , Volume Expiratório Forçado , Exposição Ambiental/efeitos adversos , Capacidade Vital , Teorema de Bayes , Contagem de Leucócitos , Metais/urina , Inflamação/urina , Testes de Função Respiratória , Análise de Mediação
15.
Environ Res ; 262(Pt 1): 119776, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142453

RESUMO

BACKGROUND: Although human biomonitoring of environmental chemicals has been considered a gold standard, these methods can be costly, burdensome, and prone to unwanted sources of variability that may cause confounding. Silicone wristbands have recently emerged as innovative passive samplers for measuring personal exposures. METHODS: In a pilot study from 2019 to 2021 involving 55 children aged 5-9 years in Seattle and Yakima, Washington, we utilized silicone wristbands to explore associations of sociodemographic variables and COVID-19-related restrictions, including school closures, with exposures to numerous chemicals including brominated and organophosphate ester (OPE) flame retardants, polychlorinated biphenyls, polycyclic aromatic hydrocarbons (PAHs), phthalates, and pesticides. We additionally conducted the first analysis testing silicone wristband chemicals as predictors of child wheeze, individually and in mixtures via logistic weighted quantile sum regression (WQS). RESULTS: Among 109 semi-volatile organic compounds measured, we detected 40 in >60% of wristbands worn by children continuously for an average of 5 days. Chemicals were generally positively correlated, especially within the same class. Male sex and increasing age were linked with higher exposures across several chemical classes; Hispanic/Latino ethnicity was linked with higher exposures to some phthalates and OPEs. COVID-19 restrictions were associated with lower wristband concentrations of brominated and triaryl OPE flame retardants. Each one-decile higher WQS exposure index was suggestively associated with 2.11-fold [95% CI: 0.93-4.80] higher odds of child wheeze. Risk of child wheeze was higher per 10-fold increase in the PAH chrysene (RR = 1.93[1.07-3.49]), the pesticide cis-permethrin (3.31[1.23-8.91]), and di-isononyl phthalate (DINP) (5.40[1.22-24.0]) CONCLUSIONS: Our identification of demographic factors including sex, age, and ethnicity associated with chemical exposures may aid efforts to mitigate exposure disparities. Lower exposures to flame retardants during pandemic restrictions corroborates prior evidence of higher levels of these chemicals in school versus home environments. Future research in larger cohorts is needed to validate these findings.

16.
Environ Int ; 190: 108942, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39151266

RESUMO

Air pollution is an example of a complex environmental mixture with different biological activities, making risk assessment challenging. Current cancer risk assessment strategies that focus on individual pollutants may overlook interactions among them, potentially underestimating health risks. Therefore, a shift towards the evaluation of whole mixtures is essential for accurate risk assessment. This study presents the application of an in vitro New Approach Methodology (NAM) to estimate relative cancer potency factors of whole mixtures, with a focus on organic pollutants associated with air particulate matter (PM). Using concentration-dependent activation of the DNA damage-signaling protein checkpoint kinase 1 (pChk1) as a readout, we compared two modeling approaches, the Hill equation and the benchmark dose (BMD) method, to derive Mixture Potency Factors (MPFs). MPFs were determined for five PM2.5 samples covering sites with different land uses and our historical pChk1 data for PM10 samples and Standard Reference Materials. Our results showed a concentration-dependent increase in pChk1 by all samples and a higher potency compared to the reference compound benzo[a]pyrene. The MPFs derived from the Hill equation ranged from 128 to 9793, while those from BMD modeling ranged from 70 to 303. Despite the differences in magnitude, a consistency in the relative order of potencies was observed. Notably, PM2.5 samples from sites strongly impacted by biomass burning had the highest MPFs. Although discrepancies were observed between the two modeling approaches for whole mixture samples, relative potency factors for individual PAHs were more consistent. We conclude that differences in the shape of the concentration-response curves and how MPFs are derived explain the observed differences in model agreement for complex mixtures and individual PAHs. This research contributes to the advancement of predictive toxicology and highlights the feasibility of transitioning from assessing individual agents to whole mixture assessment for accurate cancer risk assessment and public health protection.

17.
Chemosphere ; 364: 143086, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39146990

RESUMO

The risk of chronic inflammatory diseases has been linked to exposure to polycyclic aromatic hydrocarbons (PAHs). However, limited data are available regarding their impact on periodontitis. This study aims to explore the association between PAHs and periodontitis while also evaluating the potential modifying effects of healthy lifestyles. We included 17,031 participants from the US National Health and Nutrition Examination Survey (NHANES, 2001-2004 and 2009-2014). A meta-analysis-based environment-wide association study (EWAS) was adopted to identify environmental chemicals for the mean probing pocket depth (PPD) and the mean attachment loss (AL). PAHs were further evaluated concerning the cross-sectional association with Mod/Sev periodontitis using multivariable logistic regression models. Moreover, healthy lifestyle scores were estimated to assess their modifying effect on the PAH-periodontitis association. EWAS analysis identified several urinary PAH metabolites as significant risk factors for the mean PPD and AL (false discovery rate <0.05, Q > 0.05). Periodontitis severity was positively associated with eight individual and total PAH concentrations. Stratifying the participants in terms of healthy lifestyle scores did not reveal any association in the healthy group. Moreover, the association weakened in never-smokers and individuals with sufficient physical activity and normal weight. PAH exposure was a risk factor for periodontitis. A healthier lifestyle was observed to offset the risk potentials of PAHs for periodontitis. Smoking cessation, physical activity, and weight loss might be recommended as a healthy lifestyle strategy for ameliorating PAH-related periodontitis.

18.
Chemosphere ; : 143090, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154765

RESUMO

Oil sands process-affected water (OSPW) is a source of atmospheric emission for polycyclic aromatic compounds (PACs), compounds known to have toxic effects on humans. Estimating emissions and assessing the chemical fate of PACs requires measured or predicted physical-chemical properties such as Henry's law constants (H), that can be used to predict chemical transfer into the atmosphere. OSPW is a complex water-based mixture that is highly variable in composition and nature and contains both organic and inorganic ions. This study uses COSMO-RS solvation theory to estimate and compare Henry's law constants for a set of PACs in both water and theoretically modelled OSPW, to assess the expected deviation that occurs from pure water H values due to the ionic content within OSPW. Experimental measurements of Henry's law constants for PACs in pure water and OSPW using EVA-coated passive dosing and sampler beads were also made in support of our theoretical predictions. For the theory work, OSPW composition data for the Athabasca oil sands in Alberta were used to model a simulated OSPW environment with realistic sodium, chloride, fluoride, sulfate, potassium, bicarbonate, and naphthenic acid concentrations. Theory results indicate that the combined presence of these ions at OSPW concentrations has a negligible effect on H values, causing on average a 3% or 0.014 log unit deviation. By comparison, temperature has a much larger influence on H values, with estimations showing an average 0.20 log unit increase for a 5°C increase in temperature. The experimental results demonstrate that Henry's law constants can be accurately and precisely measured with this technique in pure water but with less precision in OSPW. Nevertheless, the experimental results support the conclusion that Henry's law constants for OSPW can be accurately estimated assuming a pure water phase.

19.
Wei Sheng Yan Jiu ; 53(4): 646-655, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39155235

RESUMO

OBJECTIVE: To develop a method which is used for rapid determination of 16 kinds of polycyclic aromatic hydrocarbons(PAHs) and 16 kinds of phthalates(PAEs) in tap water by stirring rod adsorption extraction(SBSE) combined with gas chromatography-mass spectrometry(GC-MS). METHODS: The twister mixing rod coated with polydimethylsiloxane(PDMS) and ethylene glycol-polydimethylsiloxane(EG-silicone) was used to enrich analyte from 50 mL tap water. The twister mixing rod coated with EG-silicone was directly placed into the sample bottle containing 50 mL of tap water, while fixing the PDMS stir bar on the inner wall of the sample bottle and immersing it in the liquid. Add 5%(W/V) sodium chloride to the sample bottle, followed by adding 5% methanol. Stir at room temperature for 2 hours for extraction. Next, remove the mixing stick and dry its surface. The pre-prepared SBSE was analyzed by TD-GC/MS, with the optimized thermal desorption conditions: desorption temperature 275 ℃, desorption time 15 min, cryofocusing temperature-40 ℃. RESULTS: Regression equations revealed acceptable linearity(correlation coefficients >0.986) across the working-standard range from 200-2000 ng/L for the 32 analytes. The limits of detection(LODs)were further evaluated were from 1.13-121 ng/L. With the optimized pretreatment method, the spiked recoveries of tap samples(200 and 2000 ng/L)were in the range of 62.5%-98.4% with the relative standard deviations(RSDs) of 3.5%-25.3%. CONCLUSION: The established method can realize the rapid detection of high throughput in the laboratory, it is simple, convenient to operate, and the extraction and analysis time is short.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Ácidos Ftálicos/análise , Adsorção , Água Potável/análise , Água Potável/química
20.
Toxicol Sci ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107868

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like Cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2 dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, while Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA