Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000642

RESUMO

Wood-plastic composites are becoming increasingly recognized for their sustainability and their potential for use in various production processes. Nevertheless, enhancing their mechanical strength continues to be a difficult challenge. The objective of this research was to improve the mechanical strength of wood-plastic composite components manufactured through selective laser sintering (SLS). This was achieved by integrating a sustainable composite material, Prosopis chilensis (PCP), with polyethersulfone (PES) to form a composite referred to as PCPC. This study showcased the effect of various PCP particle sizes on mechanical strengths, dimensional accuracies (DAs), and surface roughness of PCPC parts manufactured using AFS-360 SLS. Single-layer sintering was employed to assess PCPC powder's formability with varying PCP particle sizes, and various tests were conducted to understand the materials' thermal properties and analyze particle dispersion and microstructure. The results demonstrated that PCP particle sizes ≤ 0.125 mm significantly enhanced the mechanical strength, forming quality, and DA compared to other particle sizes and pure PES. Key findings for PCPC parts with PCP ≤ 0.125 mm included a bending strength of 10.78 MPa, a tensile strength of 4.94 MPa, an impact strength of 0.91 kJ/m2, and a density of 1.003 g/cm3. Post-processing further improved these parameters, confirming that optimizing PCP particle size is crucial for enhancing the mechanical properties and overall quality of PCPC parts produced via SLS.

2.
Regen Ther ; 26: 251-259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974324

RESUMO

Diabetes Mellitus (DM) disrupts the body's capability to control blood glucose statuses. Type 1 diabetes mellitus (T1DM) arises from inadequate insulin production and is treated with insulin replacement therapy. Stem cell therapy is a hopeful treatment for T1DM that involves using adult stem cells to generate insulin-producing cells (IPCs). Mesenchymal stem cells (MSCs) are particularly advantageous for generating IPCs. The islet cells require interactions with the extracellular matrix for survival, which is lacking in conventional 2D culture systems. Natural or synthetic polymers create a supportive 3D microenvironment in tissue engineering. We aim to construct superior differentiation conditions employing polyethersulfone (PES)/Fish gelatin scaffolds to differentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to IPCs. In this study, the PES/fish gelatin scaffold (3D) was manufactured by electrospinning, and then its biocompatibility and non-toxicity were investigated by MTT assay. After that, scaffold-supportive effects on WJ-MSCs differentiation to IPCs were studied at the gene and protein levels. After exposure to the differentiation media, 2D and 3D (PES/Fish gelatin) cultured cells were slowly aggregated and developed spherical-shaped clusters. The viability of cells was found to be comparable in both 2D and 3D cultures. The gene expression analysis showed that efficiency of differentiation was more elevated in 3D culture. Additionally, ELISA results indicated that C-peptide and insulin release were more significant in 3D than in 2D culture. In conclusion, the PES/fish gelatin scaffold is highly promising for pancreatic tissue engineering because it supports the viability, growth, and differentiation of WJ-MSCs into IPCs.

3.
Environ Res ; : 119472, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908665

RESUMO

The study investigated the influence of additives on the fabrication of mixed matrix membranes comprising polyethersulfone (PES), with a specific focus on hydrophilicity, flux, morphology, and antifouling properties. Carboxymethyl modified ß-cyclodextrin (CMß-CD) was used to enhance the dispersion and hydrophilicity of graphene oxide (GO), leading to the formation of a hydrophilic and stable composite nanoparticle (CMCD@GO). The hydrophilicity (WCA <51.5°) and water flux (32.6 L.m-2.h-1) of the modified PES membranes (MCDGO-x) were improved by the incorporation of CMCD@GO nanoparticles, while that of PES membrane was 79.7° and 10.6 L.m-2.h-1. The rate of backscattered light intensity (ΔBS) of MCDGO-x suspensions remains stable, suggesting stable dispersion of CMCD@GO in organic solvents. Compared to the bare PES membrane, the MCDGO-x membrane exhibits a thinner active layer and a finger-like structure. The MCDGO-x membrane exhibited excellent naphthenic acids (NAs) rejection (> 93.2%) due to reduced roughness and higher hydrophilicity, while the GO-modified PES membrane (MGO-5) exhibited lower NAs rejection (87.2%). Furthermore, the MCDGO-5 membrane showed higher flux recovery ratio (FRR) of 79.3% compared to MGO-5 membrane (68.5%) after three cycles, indicating the antifouling performance of MCDGO-x for NAs was significantly improved. The combination of CMß-CD and GO enhance the flux and antifouling properties of PES ultrafiltration membranes, suggesting significant potential for applications in the purification of oil sands process water and the treatment of oily wastewater.

4.
Biomimetics (Basel) ; 9(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921200

RESUMO

Dialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility. The chemical modification approach is based on an aminolysis reaction. Characterization, computational simulations, and clinical analysis were conducted to study the modified membranes. Atomic force microscopy (AFM) patterns showed a lower mean roughness for carboxybetaine-modified (6.3 nm) and sulfobetaine-modified (7.7 nm) membranes compared to the neat membrane (52.61 nm). The pore size of the membranes was reduced from values above 50 nm for the neat PES to values between 2 and 50 nm for zwitterionized membranes, using Brunauer-Emmett-Teller (BET) analysis. More hydrophilic surfaces led to a growth equilibrium water content (EWC) of nearly 6% for carboxybetaine and 10% for sulfobetaine-modified membranes. Differential scanning calorimetry (DSC) measurements were 12% and 16% stable water for carboxybetaine- and sulfobetaine-modified membranes, respectively. Sulfobetaine membranes showed better compatibility with blood with respect to C5a, IL-1a, and IL-6 biomarkers. Aminolysis-based zwitterionization was found to be suitable for the improvement of hemodialysis membranes. The approach introduced in this paper could be used to modify the current dialysis membranes with minimal change in the production facilities.

5.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732663

RESUMO

The research used polyethersulfone (PES) as a membrane material, polyvinylpyrrolidone (PVP) k30 and polyethylene glycol 400 (PEG 400) as water-soluble additives, and dimethylacetamide (DMAc) as a solvent to prepare hollow-fiber ultrafiltration membranes through a nonsolvent-induced phase separation (NIPS) process. The hydrophilic nature of PVP-k30 and PEG caused them to accumulate on the membrane surface during phase separation. The morphology, chemical composition, surface charge, and pore size of the PES membranes were evaluated by SEM, FTIR, zeta potential, and dextran filtration experiments. The paper also investigated how different spinning solution compositions affected membrane morphology and performance. The separation efficiency of membranes with four different morphologies was tested in single-protein and double-protein mixed solutions. The protein separation effectiveness of the membrane was studied through molecular weight cutoff, zeta potential, and static protein adsorption tests. In addition, the operating pressure and pH value were adjusted to improve ultrafiltration process conditions. The PES membrane with an intact sponge-like structure showed the highest separation factor of 11, making it a prime candidate membrane for the separation of bovine serum albumin (BSA) and lysozyme (LYS). The membrane had a minimal static protein adsorption capacity of 48 mg/cm2 and had excellent anti-fouling properties. When pH = 4, the BSA retention rate was 93% and the LYS retention rate was 23%. Furthermore, it exhibited excellent stability over a pH range of 1-13, confirming its suitability for protein separation applications.

6.
Chempluschem ; : e202300711, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770954

RESUMO

The advancement of technologies for producing chemicals and materials from non-fossil resources is of critical importance. An illustrative example is the dehydrogenation of glucose, to yield gluconic acid, a specialty chemical. In this study, we propose an innovative production route for gluconic acid while generating H2 as a co-product. Our concept involves a dual-function membrane, serving both as a catalyst for glucose dehydrogenation into gluconic acid and as a means to efficiently remove the produced H2 from the reaction mixture. To achieve this two membranes were developed, one catalytically active and one dense aimed at H2 removal. The catalytic membrane showed significant activity, yielding 16 % gluconic acid (t=120 min) with a catalyst selectivity of 93 % and stable performance over five consecutive cycles. Incorporating the H2 separating membrane showed the significance of H2 removal in driving the reaction forward. Its inclusion led to a twofold increase in gluconic acid yield, aligning with Le Chatelier's principles. As a future prospect the two layers can be combined into a dual-layer membrane which opens the way for a new production route to simultaneously produce gluconic acid and H2, using high-throughput reactors such as hollow-fiber systems.

7.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673817

RESUMO

Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.


Assuntos
Biotecnologia , Polímeros , Sulfonas , Animais , Humanos , Materiais Biocompatíveis/química , Biotecnologia/métodos , Polímeros/química , Sulfonas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
8.
Luminescence ; 39(4): e4734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576335

RESUMO

Simultaneously improving the stability and photoluminescence quantum yield (PLQY) of all inorganic perovskite nanocrystals (NCs) is crucial for their practical utilization in various optoelectronic devices. Here, CsPbBr3 NCs coated with polyethersulfone (PES) were prepared via an in-situ co-precipitation method. The sulfone groups in PES bind to undercoordinated lead ion (Pb2+) on the CsPbBr3 NCs, resulting in significant reduction of surface defects, thus enhancing the PLQY from 74.2% to 88.3%. Meanwhile, the PES-coated NCs exhibit high water resistance and excellent heat and light stability, maintaining over 85% of the initial PL intensity under thermal aging (70°C, 4 h) and continuous 365 nm ultraviolet (UV) light irradiation (24 W, 8 h) conditions. By contrast, the PL intensity of the control NCs dramatically dropped to less than 40%. Finally, a diode emitting bright white light was fabricated utilizing the PES-coated CsPbBr3 NCs, which exhibits a color gamut of ~110% NTSC standard.


Assuntos
Compostos de Cálcio , Nanopartículas , Óxidos , Polímeros , Titânio , Sulfonas
9.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543465

RESUMO

In this study, the interlaminar fracture toughness and impact strength of polyethersulfone reinforced with continuous carbon fibers were studied. Interlaminar fracture toughness tests were performed using the double cantilever beam method. It was shown that surface modification using the thermal oxidation method of the carbon fibers can strongly increase the interlaminar fracture toughness of the obtained composites. Thus, the maximum value reached 1.72 kJ/m2, which was 40% higher than the fracture toughness of the composites reinforced with initial carbon fibers. Moreover, fractographic analysis using a scanning electron microscope allowed us to highlight the main reasons for the dependence of fracture toughness on fiber content and surface modification conditions of the carbon fibers. It was shown that the main factor that allowed for an increase in fracture toughness was the enhanced interfacial interaction between the fibers and polymer matrix. Additionally, it was found that expectedly, there was a good correlation between interlaminar fracture toughness and interlaminar shear strength results. However, a negative influence of surface modification on the impact properties of composites was found. Such behavior occurred because of higher structural stability and lower exposure to delamination in multiple layers of the composites reinforced with the modified carbon fibers. It was found that impact energy reached ~150 kJ/m2 for the polyethersulfone-based composites reinforced with initial fibers, while the composites reinforced with modified carbon fibers showed impact energy values of only ~80 kJ/m2. Nevertheless, surface modification of carbon fibers using the thermal oxidation method can be an effective method for improving the performance properties of polyethersulfone-based composite materials.

10.
J Biotechnol ; 387: 23-31, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38548020

RESUMO

Enzyme immobilization in membrane bioreactors has been considered as a practical approach to enhance the stability, reusability, and efficiency of enzymes. In this particular study, a new type of hybrid membrane reactor was created through the phase inversion method, utilizing hybrid of graphene oxide nanosheets (GON) and polyether sulfone (PES) in order to covalently immobilize the Candida rugosa lipase (CRL). The surface of hybrid membrane was initially modified by (3-Aminopropyl) triethoxysilane (APTES), before the use of glutaraldehyde (GLU), as a linker, through the imine bonds. The resulted enzymatic hybrid membrane reactors (EHMRs) were then thoroughly analyzed by using field-emission scanning electron microscopy (FE-SEM), contact angle goniometry, surface free energy analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, attenuated total reflection (ATR), and energy-dispersive X-ray (EDX) spectroscopy. The study also looked into the impact of factors such as initial CRL concentration, storage conditions, and immobilization time on the EHMR's performance and activity, which were subsequently optimized. The results demonstrated that the CRLs covalently immobilized on the EHMRs displayed enhanced pH and thermal stability compared to those physically immobilized or free. These covalently immobilized CRLs could maintain over 60% of their activity even after 6 reaction cycles spanning 50 days. EHMRs are valuable biocatalysts in developing various industrial, environmental, and analytical processes.


Assuntos
Reatores Biológicos , Estabilidade Enzimática , Enzimas Imobilizadas , Lipase , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Lipase/química , Membranas Artificiais , Grafite/química , Saccharomycetales/enzimologia , Glutaral/química , Espectroscopia de Infravermelho com Transformada de Fourier , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Temperatura , Difração de Raios X
11.
Macromol Biosci ; 24(6): e2300496, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38359399

RESUMO

The contact between the dialysis membrane and blood can induce oxidative stress and thrombosis, causing oxidative organ damage and impaired toxin clearance. To date, the selection of anticoagulants has focused on mechanisms inhibiting white, but not red (erythrocytes) thrombus formation. In the present study, polyethersulfone (PES) membranes are modified with the antioxidant drug tiopronin; the physicochemical properties and dialysis performance of the Tio-PES membranes are evaluated. The effects on erythrocyte thrombosis are evaluated in terms of erythrocyte morphology, prothrombotic properties (adhesion, aggregation, viscosity, sedimentation, and hemolysis), and fibrinogen (FIB)-erythrocyte interactions. The regular anticoagulant and antiplatelet properties are also assessed. Superoxide dismutase, malondialdehyde, plasma protein, and complement C3a are further determined. Finally, the biosafety of the Tio-PES membranes is evaluated both in vitro and in vivo. The Tio-PES membranes exhibit excellent physicochemical properties and improved dialysis performance. It is found that the Tio-PES membranes stabilize erythrocyte morphology, reduce erythrocyte prothrombotic properties, decrease FIB adsorption, and prevent red thrombus formation. In addition, the Tio-PES membranes exhibit excellent antioxidant properties and show biosafety in primary toxicity studies. Thus, Tio-PES membranes hold promise as novel, safe, and effective dialysis materials for potential clinical application.


Assuntos
Antioxidantes , Eritrócitos , Teste de Materiais , Membranas Artificiais , Polímeros , Sulfonas , Trombose , Sulfonas/química , Sulfonas/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Polímeros/química , Polímeros/farmacologia , Trombose/prevenção & controle , Humanos , Animais , Hemólise/efeitos dos fármacos , Anticoagulantes/farmacologia , Anticoagulantes/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fibrinogênio/química , Fibrinogênio/metabolismo
12.
Waste Manag Res ; : 734242X231223914, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38366790

RESUMO

This study introduces an innovative approach for enhancing oil-water emulsion separation using a polyethersulfone (PES) membrane embedded with a nanocomposite of graphene oxide (GO) and silver oxide (AgO). The composite membrane, incorporating PES and polyvinyl chloride (PVC), demonstrates improved hydrophilicity, structural integrity and resistance to fouling. Physicochemical characterization confirms successful integration of GO and AgO, leading to increased tensile strength, porosity and hydrophilicity. Filtration tests reveal substantial improvements in separating various oils from contaminated wastewater, with the composite membrane exhibiting superior efficiency and reusability compared to pristine PES membranes. This research contributes to the development of environmentally friendly oil-water separation methods with broad industrial applications.

13.
Chemosphere ; 352: 141362, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309606

RESUMO

This study investigates the performance of the mixed matrix membranes (MMMs) incorporating hybrid fillers of metal-organic framework (MIL-125-NH2) and graphene nanosheets (GNs) for enhanced methane (CH4) and hydrogen (H2) separation in the purification sector. The physico-chemical properties of the MMMs were evaluated by SEM, XRD, FTIR, AFM, TGA, DTG, and Brunauer-Emmett-Teller. The permeability and selectivity of the MMMs were determined using different single gases (CO2, N2, H2, and CH4) at various temperatures (20-60 °C). Optimization of fabrication parameters resulted in a significant improvement in porosity and roughness of the fabricated MMMs. The permeabilities of the MOF/PES membrane are 20.3 (CO2), 23.9 (N2), 32.2 (CH4), and 24.1 (H2) x 104 Barrer, while incorporating 0.05 wt% of GNs into the MOF/PES membrane improved the permeability by 36 % (CO2), 41 % (N2), 31 % (CH4), and 370 % (H2). In addition, the H2/CO2 and H2/N2 selectivities of the MMMs significantly increased up to 4 and 3.3, with an improvements of 236 % and 230 %, respectively, compared to the MOF/PES membrane. Furthermore, the CH4/CO2 and CH4/N2 selectivities of the MMMs decreased by 4 %. Therefore, a hybrid filler (10 wt % of MIL-125-NH2 and 0.05 wt % of GNs is highly recommended to improve the permeability and selectivity of the PES membrane, expanding its potential applications in CH4 and H2 purification.


Assuntos
Dióxido de Carbono , Grafite , Excipientes , Gases , Hidrogênio
14.
Environ Res ; 247: 118266, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253193

RESUMO

Based on the dye/salts separation efficiency and membrane injury caused by serious pollution of dye/salts wastewater, this study constructed a 2D tight ultrafiltration membrane that could both solve the membrane injury problem and improve the dye/salts separation efficiency, the compatibility of good self-healing performance and penetration performance by 2D material magnesium-aluminum Layered double hydroxide (MgAl-LDH). The self-repairing of physical injury was achieved through the swelling effect of AMPS-PAN, this property was proved by permeate flux, the retention performance of salts in dye/salts solution, the comparison of scanning electron microscope (SEM), and the mechanical strength after physical injury. The healing of chemical injury occured through the reaction of CC and polyethersulfone chain breakage, which was confirmed by X-ray photoelectron spectroscopy (XPS), permeate flux, the retention performance of salts in dye/salts solution, and mechanical property. The high separation efficiency of dye/salts was achieved through 2D material MgAl-LDH, which was proved by separation selectivity ɑ. The compatibility of good self-healing performance and penetration performance was obtained by 2D material MgAl-LDH, which was proved by the penetration and self-healing performance. Morever, the membrane illustrated excellent both permeability and dye/sals separation efficiency, just like the permeate flux, the retention performance of sodium sulfate in methyl blue/sodium sulfate solution, the retention performance of Na2SO4 in methyl blue/Na2SO4 solution, the retention rate of methyl blue were 99.1 L/m2h, 12.5%, 7.9%, 97.7%, respectively. The results of pollution index and contact angle also proved that the membrane had anti-pollution performance.


Assuntos
Benzenossulfonatos , Corantes , Polímeros , Sais , Sulfonas , Corantes/química , Sulfatos
15.
Nanotechnology ; 35(15)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38181443

RESUMO

Dynamic mechanical properties of the poly(ether-sulfone) (PES)/multi-walled carbon nanotube (MWCNT) nanocomposites manufactured by powder metallurgical route was discussed for the first time. The structural investigation of the nanocomposites was analysed by x-ray diffraction. At room temperature, both storage modulus and microhardness of the nanocomposites increased by more than 60% while the strengthening efficiency at higher temperatures is several-folds compared to that of neat PES. The nanocomposites exhibited better damping behaviour compared to neat PES. The Cole-Cole plot indicated a good interaction between the PES and the MWCNT. Moreover, the coefficient of reinforcement decreased by 42% while the degree of entanglement increased.

16.
Chemosphere ; 349: 140837, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065266

RESUMO

Coaxial electrospun polyacrylonitrile (PAN) and polyethersulfone (PES) based nanofibers were prepared and was used for filtration of fluoride from drinking water for the first time. Well defined fiber geometry was obtained at 1 ml/h of core polymer, i.e., PES flow rate, 1.4 ml/h of shell polymer, i.e., PAN flow rate, voltage of 22 kV, while the distance between the needle tip and the collector was 15-17 cm. Increase in bead like structure in fiber strands was observed with higher PAN concentration, while it decreased for lower PES concentration, thereby giving an optimum composition (6 wt% PAN and 10 wt% PES) for uniform fiber morphology. This nanofiber, abbreviated as N2 acted as an ultrafiltration membrane having permeability in the lower range, i.e., 0.5 × 10-11 m/s Pa and its fluoride removal efficacy was 46%. Fibers were also hydrophilic with considerable porous nature. Uptake of fluoride by this N2 nanofibers were evident from binding energy of 685.2 eV during XPS analysis. It is probable that nitrile and sulfone groups present in the core and shell of the nanofibers played an active in fluoride uptake, which was estimated as 110 mg/g at 298 K. Isoelectric point was in alkaline range which promoted negative fluoride ion uptake on positive nanofiber surface. Lead played higher masking effect in the uptake of fluoride in comparison to arsenic as coexisting ion. Dynamic cross flow filtration was also studied with this nanofiber in both synthetic and real life feed solution.


Assuntos
Fluoretos , Nanofibras , Nanofibras/química , Rios , Polímeros/química , Sulfonas
17.
Artif Organs ; 48(4): 365-374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37962073

RESUMO

BACKGROUND: Clearum™ is a high flux steam sterilized dialyzer for patients with hemodialysis or hemodiafiltration. This study evaluated the safety and performance of the Clearum high flux steam sterilized hemodialyzer in the removal of small and middle-sized toxins. METHODS: A prospective, interventional, nonrandomized study enrolled twenty end-stage renal disease patients undergoing hemodialysis. The Clearum high flux steam sterilized dialyzer was compared to Fresenius FX dialyzers for baseline comparison. The duration of the trial was 2 weeks for the FX dialyzer and 6 weeks with the Clearum high flux steam sterilized dialyzer. In vitro studies with dextrans of varying sizes were performed to compare the membrane characteristics and sieving coefficient curves for the two dialyzers. RESULTS: The primary objective of a mean urea reduction ratio >65% was met, with no significant difference in mean urea reduction ratio between the Clearum high flux steam sterilized and Fresenius FX-series of dialyzers (p = 0.86). No dialyzer-related adverse events were reported in the study. ß-2-microglobulin reduction with the Clearum high flux steam sterilized dialyzer was statistically higher than the FX-series dialyzer (66.5% vs. 53.6%; p < 0.0001). Predialysis interleukin-6 and C-reactive protein concentrations, blood-rest scores (residual blood after blood restitution), and thrombin-anti-thrombin values were comparable. Albumin remained stable during the 6 weeks of Clearum high flux steam sterilized dialyzer use, with no appreciable differences compared to the Fresenius FX-series. CONCLUSION: The Clearum high flux steam sterilized dialyzer showed good mid-term effectivity for small and middle molecule removal with no reported dialyzer-related adverse events.


Assuntos
Rins Artificiais , Humanos , Estudos Prospectivos , Vapor , Diálise Renal/efeitos adversos , Membranas Artificiais , Ureia
18.
ChemSusChem ; 17(10): e202301502, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38154027

RESUMO

This article reports on the synthesis of an innovative smart polymer, P5-QPDMAEMA, opportunely developed with the aim of combining the responsiveness of PDMAEMA polymer and the host-guest properties of covalently linked pillar[5]arenes. Thanks to a traditional Non-Induced Phase Separation (NIPS) process performed at various coagulation pH, the blending of P5-QPDMAEMA with polyethersulfone gave rise to the formation of functional beads for the removal of organic dyes in water. Adsorption tests are carried out on all the produced blend-based beads by employing two representative dyes, the cationic methylene blue (MB), and the anionic methyl orange (MO). In particular, the P5-QPDMAEMA based beads, prepared at acidic pH, featured the best MO removal rate (i. e., 91.3 % after 150 minutes starting from a 20 mg ⋅ L-1 solution) and a high selectivity towards the removal of the selected anionic dye. Based on the adsorption kinetics and isotherm calculations, the pseudo-first order and Freundlich models were shown to be the most suitable to describe the MO adsorption behavior, achieving a maximum adsorption capacity of 21.54 mg ⋅ g-1. Furthermore, zwitterionic beads are obtained by a post-functionalization of the PDMAEMA and the P5-QPDMAEMA based beads, to test their removal capability towards both anionic and cationic dyes, as shown.

19.
Chemosphere ; 350: 141051, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159730

RESUMO

Mixed-matrix membranes (MMMs) with an ideal polymer/hydrophilic flux enhancer interface considerably recuperates the separation and purification performance of membrane. In this direction, a novel CoFe2O4 functionalized natural clay-bentonite (CoFe2O4@BT) material as a compatible flux enhancer was synthesized for preparation of mixed matrix based in polyethersulfone (PES) matrix. Here, the influences of CoFe2O4@BT on the morphology and performance of the MMMs membranes were systematically investigated using various analytical techniques. Meanwhile, the water flux and sepration eficiency of the CoFe2O4@BT-PES membranes significantly enhanced due to the incorporation of CoFe2O4@BT that altered hydrophilicity, pore and surface characteristic features. The water flux as well as separation efficiency range up to 95%, 94.69%, 94.16% of Congo red (CR), Crystal violet (CV), and humic acid (HA) respectively. Meanwhile, the fouling parameters demonstrated that the CoFe2O4@BT-PES membranes exhibited better antifouling property in the long term experiment comparing with commercial polyamide membrane. CoFe2O4@BT material incorporated membranes showed less decline ratio and a better recovery ratio. The high rejection of dyes with a high permeation flux of the newly designed membranes indicated an amazing possibility for dye purification. In this study, a potential dye mechanism for composite membranes impacted by synthetic CoFe2O4@BT was also put forth. Within the context of application considerations for environmental protection, new materials stock in membranes show good potential for the separation of different organic contaminants.


Assuntos
Bentonita , Polímeros , Sulfonas , Purificação da Água , Águas Residuárias , Membranas Artificiais , Purificação da Água/métodos , Corantes/química , Água/química
20.
Colloids Surf B Biointerfaces ; 234: 113725, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157764

RESUMO

The recent "cell-based theory" of coagulation suggests that platelets serve as the site of coagulation factor reactions, making platelets an effective target for inhibiting membrane thrombosis. Unfortunately, there is limited research on how blood purification membranes affect platelet intracellular signaling. In this study, we modified polyethersulfone (PES) membranes with the platelet phosphodiesterase (PDE) inhibitor dipyridamole (DIP) and investigated the effects of the DIP/PES (DP) membranes on platelet adhesion, activation, aggregation, and secretion, as well as the role of the PDE-cyclic adenosine monophosphate (cAMP) intracellular signaling pathway. Additionally, we evaluated the hemocompatibility and preliminary in vivo safety of DP membranes. Our results demonstrate that the modified DP membranes effectively inhibited platelet adhesion, membrane CD62P expression, and plasma soluble P-selectin activation levels. Furthermore, we confirmed that DP membranes achieved platelet aggregation inhibition and reduced platelet factor 4 and ß-thromoglobulin secretion levels by inhibiting platelet intracellular PDE-cAMP signaling. Moreover, the modified DP membranes exhibited good anticoagulant and red blood cell membrane stability and complement resistance and demonstrated preliminary biocompatibility in mouse experiments. Collectively, these findings highlight the potential application of DP dialysis membranes in blood purification for critically ill patients.


Assuntos
Inibidores de Fosfodiesterase , Diálise Renal , Humanos , Camundongos , Animais , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Dipiridamol/metabolismo , Dipiridamol/farmacologia , Plaquetas , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA