Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1415191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148942

RESUMO

Background: Drug resistance is common in triple-negative breast cancer (TNBC) therapy. To identify a method to overcome chemotherapy resistance in TNBC cells, an siRNA targeting the AXL gene (siAXL), which can overcome drug resistance, was used in this study. A nanodelivery system was constructed to co-deliver siAXL and paclitaxel (PTX). Methods: A biodegradable and tumor microenvironment (TME)-sensitive mPEG-coated dendritic polylysine material (PDPLL) was synthesized. This material was used to construct single-molecule nanoparticles to co-deliver PTX and siAXL. The drug encapsulation and morphological properties of the nanoparticles (NPs) were characterized. The sensitivity of the NPs to the TME was evaluated in vitro with a dialysis method. The tumor-targeting effect of the PDPLL NPs was evaluated by fluorescence imaging and drug distribution evaluation in vivo. The ability to overcome drug resistance was evaluated using PTX-resistant 4T1 cells (4T1/PTX cells) in both in vitro and in vivo models. Results: PDPLL NPs had a particle size of 49.6 ± 5.9 nm and a zeta potential of 7.87 ± 0.68 mV. The PTX drug loading (DL)% was 2.59%. The siAXL DL was 2.5 mg PDPLL: 10 nmol siAXL. The release of PTX showed sustained release performance. The release of siAXL showed sensitivity for the TME. The NPs were stable in the plasma. The NPs promoted cell uptake by PTX-resistant 4T1 cells (4T1/PTX) and promoted tumor targeting and permeability in vivo. siAXL enhanced the toxicity and apoptosis efficiency of PTX in 4T1/PTX cells, as well as the cycle arrest efficiency caused by PTX. The NPs improved the above effects. In mouse 4T1/PTX orthotopic tumors, the NPs enhanced the sensitization of PTX to siAXL. Conclusion: The PDPLL NP co-delivery system possesses good encapsulating potential not only for PTX but also for siRNA. It can enhance the tumor-targeting effect and overcome the drug resistance of 4T1/PTX both in vitro and in vivo. This system is a potential delivery system for RNAs.

2.
Biosensors (Basel) ; 14(8)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194612

RESUMO

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers-such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)-the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and -80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules.


Assuntos
Alginatos , Técnicas Biossensoriais , Pseudomonas aeruginosa , Percepção de Quorum , Polilisina , Biofilmes , Microesferas , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
3.
ACS Appl Mater Interfaces ; 16(28): 36095-36105, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970470

RESUMO

Gene therapies represent promising new therapeutic options for a variety of indications. However, despite several approved drugs, its potential remains untapped. For polymeric gene delivery, endosomal escape represents a bottleneck. SO1861, a naturally occurring triterpene saponin with endosomal escape properties isolated from Saponaria officinalis L., has been described as additive agent to enhance transfection efficiency (sapofection). However, the challenge to synchronize the saponin and gene delivery system in vivo imposes limitations. Herein, we address this issue by conjugating SO1861 to a peptide-based gene vector using a pH-sensitive hydrazone linker programmed to release SO1861 at the acidic pH of the endosome. Nanoplexes formulated with SO1861-equipped peptides were investigated for transfection efficiency and tolerability in vitro and in vivo. In all investigated cell lines, SO1861-conjugated nanoplexes have shown superior transfection efficiency and cell viability over supplementation of transfection medium with free SO1861. Targeted SO1861-equipped nanoplexes incorporating a targeting peptide were tested in vitro and in vivo in an aggressively growing neuroblastoma allograft model in mice. Using a suicide gene vector encoding the cytotoxic protein saporin, a slowed tumor growth and improved survival rate were observed for targeted SO1861-equipped nanoplexes compared to vehicle control.


Assuntos
Saponinas , Animais , Humanos , Camundongos , Saponinas/química , Saponinas/farmacologia , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Peptídeos/química , Transfecção/métodos , Saponaria/química , Saporinas/química , Saporinas/farmacologia , Terapia Genética , Sobrevivência Celular/efeitos dos fármacos , Cátions/química
4.
J Sci Food Agric ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979962

RESUMO

BACKGROUND: Alicyclobacillus acidoterrestris is a common microorganism in fruit juice. It can produce off-odor metabolites and has been considered to be an important factor in juice contamination. Thus, the development of new strategy for the control of A. acidoterrestris has important practical significance. The primary objective of this work was to assess the antibacterial performance of ε-polylysine-functionalized magnetic composites (Fe3O4@MoS2@PAA-EPL) in apple juice and its effect on juice quality. Moreover, the molecular mechanism of Fe3O4@MoS2@PAA-EPL against A. acidoterrestris was explored by RNA sequencing (RNA-Seq). RESULTS: Experimental results indicated that the synthesized composites possessed the ability to inhibit the viability of A. acidoterrestris vegetative cells and spores. Besides, investigation on the quality of apple juice incubated with Fe3O4@MoS2@PAA-EPL implied that the fabricated composites displayed negligible adverse effects on juice quality. In addition, the results of RNA-Seq demonstrated that 833 differentially expressed genes (DEGs) were identified in Fe3O4@MoS2@PAA-EPL-treated A. acidoterrestris, which were associated with translation, energy metabolism, amino acid metabolism, membrane transport and cell integrity. CONCLUSION: These results suggested that the treatment of Fe3O4@MoS2@PAA-EPL disrupted energy metabolism, repressed cell wall synthesis and caused membrane transport disorder of bacterial cells. This work provides novel insights into the molecular antibacterial mechanism for ε-polylysine-functionalized magnetic composites against A. acidoterrestris. © 2024 Society of Chemical Industry.

5.
Polymers (Basel) ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000736

RESUMO

The present study aimed to extract nanocellulose (NC) from sugarcane bagasse agricultural waste through a chemical method (sulfuric acid hydrolysis and ultrasonication). Subsequently, the nanocellulose product was conjugated with polylysine (NC-PL) and assessed for its efficacy in reducing the toxicity of Fumonisin B1 (FB1), a mycotoxin produced by fungi commonly found in corn, wheat, and other grains. Experimental results confirmed the successful conjugation of NC and PL, as evidenced by FTIR peaks at 1635 and 1625 cm-1 indicating amide I and amide II vibrations in polylysine (PL). SEM analysis revealed a larger size due to PL coating, consistent with DLS results showing the increased size and positive charge (38.0 mV) on the NC-PL surface. Moreover, the effect of FB1 adsorption by NC and NC-PL was evaluated at various concentrations (0-200,000 µg/mL). NC-PL demonstrated the ability to adsorb FB1 at concentrations of 2000, 20,000, and 200,000 µg/mL, with adsorption efficiencies of 94.4-100%. Human hepatocellular carcinoma (HepG2) cells were utilized to assess NC and NC-PL cytotoxic effects. This result is a preliminary step towards standardizing results for future studies on their application as novel FB1 binders in food, food packaging, and functional feeds.

6.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39066499

RESUMO

AIMS: This study evaluates the antibacterial characteristics and mechanisms of combined tea polyphenols (TPs), Nisin, and ε-polylysine (PL) against Streptococcus canis, Streptococcus minor, Streptococcus mutans, and Actinomyces oris, common zoonotic pathogens in companion animals. METHODS AND RESULTS: Pathogenic strains were isolated from feline oral cavities and assessed using minimum inhibitory concentration (MIC) tests, inhibition zone assays, growth kinetics, and biofilm inhibition studies. Among single agents, PL exhibited the lowest MIC values against all four pathogens. TP showed significant resistance against S. minor, and Nisin against S. mutans. The combination treatment (Comb) of TP, Nisin, and PL in a ratio of 13:5:1 demonstrated broad-spectrum antibacterial activity, maintaining low MIC values, forming large inhibition zones, prolonging the bacterial lag phase, reducing growth rates, and inhibiting biofilm formation. RNA sequencing and metabolomic analysis indicated that TP, Nisin, and PL inhibited various membrane-bound carbohydrate-specific transferases through the phosphoenolpyruvate-dependent phosphotransferase system in S. canis, disrupting carbohydrate uptake. They also downregulated glycolysis and the citric acid cycle, inhibiting cellular energy metabolism. Additionally, they modulated the activities of peptidoglycan glycosyltransferases and d-alanyl-d-alanine carboxypeptidase, interfering with peptidoglycan cross-linking and bacterial cell wall stability. CONCLUSIONS: The Comb therapy significantly enhances antibacterial efficacy by targeting multiple bacterial pathways, offering potential applications in food and pharmaceutical antimicrobials.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Nisina , Polilisina , Polifenóis , Chá , Animais , Nisina/farmacologia , Antibacterianos/farmacologia , Polilisina/farmacologia , Polifenóis/farmacologia , Gatos , Chá/química , Biofilmes/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Streptococcus/genética , Transcriptoma , Boca/microbiologia , Metabolômica
7.
J Biosci Bioeng ; 138(3): 249-253, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991881

RESUMO

Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. We previously demonstrated that two representative bacterial polycationic isopeptides, ε-poly-l-α-lysine consisting of 25-35 l-α-lysine residues (ε-PαL25-35) and ε-poly-l-ß-lysine consisting of l-ß-lysine residues (ε-PßL4-13), were internalized into mammalian cells by both energy-independent direct penetration and energy-dependent endocytosis/macropinocytosis, and then diffused throughout the cytosol. In this study, we investigated the cell-penetrating activity of an ε-PαL short-chain derivative consisting of 5-14 l-α-lysine residues (ε-PαL5-14) to gain insight into the relationship between the isopeptide-chain length and the manner of cellular internalization. We prepared a conjugate of ε-PαL5-14 and a fluorescent dye (FAM) by click chemistry, and incubated the resulting polymer, ε-PαL5-14-FAM, with HeLa cells. Unlike ε-PαL25-35-FAM, ε-PαL5-14-FAM was internalized into cells only by energy-dependent endocytosis/macropinocytosis. Furthermore, a high concentration (>50 µM) was required for the internalization events. ε-PαL5-14 has a chain length almost equal to that of the membrane permeable ε-PßL4-13, which can enter cells at low concentrations. Considering that the basicity of the ß-amino group is higher than that of α-amino acid at physiological pH, ε-PßL is expected to have a greater cell-penetrating capacity than ε-PαL, provided their isopeptide-chain lengths are similar, suggesting that a more extended chain derivative of ε-PßL would be more advantageous for cellular internalization of cargo proteins than ε-PαL25-35.


Assuntos
Peptídeos Penetradores de Células , Endocitose , Polilisina , Humanos , Células HeLa , Polilisina/química , Polilisina/metabolismo , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Polieletrólitos/química , Química Click
8.
Int J Biol Macromol ; 274(Pt 1): 133050, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880451

RESUMO

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g-1. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.


Assuntos
Carboximetilcelulose Sódica , Eletrodos , Polilisina , Silício , Carboximetilcelulose Sódica/química , Silício/química , Polilisina/química , Fontes de Energia Elétrica , Reagentes de Ligações Cruzadas/química , Lítio/química
9.
Food Res Int ; 187: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763652

RESUMO

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Polilisina , Polilisina/química , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Filmes Comestíveis
10.
J Food Prot ; 87(7): 100297, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734414

RESUMO

Salmonella is capable of surviving dehydration within various foods, such as dried fruit. Dried fruit, including apple slices, have been the subject of product recalls due to contamination with Salmonella. A study was conducted to determine the fate of Salmonella on apple slices, following immersion in three antimicrobial solutions (viz., ε-polylysine [epsilon-polylysine or EP], sodium bisulfate [SBS], or peracetic acid [PAA]), and subsequent hot air dehydration. Gala apples were aseptically cored and sliced into 0.4 cm thick rings, bisected, and inoculated with a five-strain composite of desiccation-resistant Salmonella, to a population of 8.28 log CFU/slice. Slices were then immersed for 2 min in various concentrations of antimicrobial solutions, including EP (0.005, 0.02, 0.05, and 0.1%), SBS (0.05, 0.1, 0.2, and 0.3%), PAA (18 or 42 ppm), or varying concentrations of PAA + EP, and then dehydrated at 60°C for 5 h. Salmonella populations in positive control samples (inoculated apple slices washed in sterile water) declined by 2.64 log after drying. In the present study, the inactivation of Salmonella, following EP and SBS treatments, increased with increasing concentrations, with maximum reductions of 3.87 and 6.20 log (with 0.1 and 0.3% of the two compounds, respectively). Based on preliminary studies, EP concentrations greater than 0.1% did not result in lower populations of Salmonella. Pretreatment washes with either 18 or 42 ppm of PAA inactivated Salmonella populations by 4.62 and 5.63 log, respectively, following desiccation. Combining PAA with up to 0.1% EP induced no greater population reductions of Salmonella than washing with PAA alone. The addition of EP to PAA solutions appeared to destabilize PAA concentrations, reducing its biocidal efficacy. These results may provide antimicrobial predrying treatment alternatives to promote the reduction of Salmonella during commercial or consumer hot air drying of apple slices.


Assuntos
Contagem de Colônia Microbiana , Microbiologia de Alimentos , Malus , Ácido Peracético , Polilisina , Salmonella , Malus/microbiologia , Ácido Peracético/farmacologia , Salmonella/efeitos dos fármacos , Polilisina/farmacologia , Humanos , Sulfatos/farmacologia , Conservação de Alimentos/métodos , Relação Dose-Resposta a Droga , Dessecação , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Qualidade de Produtos para o Consumidor
11.
Water Res ; 259: 121834, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820729

RESUMO

Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a "pathogen gripper" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/ß-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.


Assuntos
Carvão Vegetal , Polilisina , Ultrafiltração , Purificação da Água , Polilisina/química , Carvão Vegetal/química , Adsorção , Purificação da Água/métodos , Polímeros/química , Indóis
12.
J Agric Food Chem ; 72(15): 8805-8816, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566515

RESUMO

Traditional petroleum-based food-packaging materials have poor permeability, limited active packaging properties, and difficulty in biodegradation, limiting their application. We developed a carboxymethylated tamarind seed polysaccharide composite film incorporated with ε-polylysine (CTPε) for better application in fresh-cut agricultural products. The CTPε films exhibit excellent water vapor barrier properties, but the mechanical properties are slightly reduced. Fourier transform infrared spectroscopy and X-ray diffraction spectra indicate the formation of hydrogen bonds between ε-PL and CTP, leading to their internal reorganization and dense network structure. With the increase of ε-PL concentration, composite films showed notable inhibition of postharvest pathogenic fungi and bacteria, a significant enhancement of 2,2'- azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging activity, and gradual improvement of wettability performance. Cytotoxicity experiments confirmed the favorable biocompatibility when ε-PL was added at 0.3% (CTPε2). In fresh-cut bell pepper preservation experiments, the CTPε2 coating effectively delayed weight loss and malondialdehyde increase preserved the hardness, color, and nutrients of fresh-cut peppers and prolonged the shelf life of the fresh-cut peppers, as compared with the control group. Therefore, CTPε composite films are expected to be a valuable packaging material for extending the shelf life of freshly cut agricultural products.


Assuntos
Capsicum , Quitosana , Tamarindus , Antioxidantes/farmacologia , Antioxidantes/análise , Polilisina/farmacologia , Polilisina/química , Capsicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos , Polissacarídeos/farmacologia , Sementes/química , Quitosana/química
13.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669991

RESUMO

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Assuntos
Carbono , Raios Infravermelhos , Tamanho da Partícula , Terapia Fototérmica , Polilisina , Pontos Quânticos , Polilisina/química , Carbono/química , Animais , Pontos Quânticos/química , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Propriedades de Superfície , Feminino , Sobrevivência Celular/efeitos dos fármacos , Neoplasias/terapia , Neoplasias/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-38597227

RESUMO

Recently, paclitaxel (PTX) was reported to increase intracellular lipid reactive oxygen species (ROS) levels, triggering cancer cell ferroptosis. Based on this, some efforts had been made to improve PTX treatment for non-small-cell lung cancer (NSCLC). Our previous studies demonstrated that triptolide (TPL) could improve the antitumor effect of PTX. Nevertheless, the poor solubility and side effects often limit the application of chemotherapy drugs. In this paper, we constructed a novel nanodrug delivery system (NDDS) chemosynthesis by PEGylated generation 3 (G3) dendritic polylysine coloaded with PTX and TPL (PTX-TPL-PEG-PLL, PTPP), which was endowed with the ability of tumor targeting and favorable solubility. In addition, we demonstrated that TPL could induce ROS generation by regulating the NF-κB signaling pathway to enhance the ferroptosis-induced effect of PTX. Besides, ferroptosis induced by PTPP could improve chemoresistance through inhibiting the level of P-gp, GPX4, and SLC7A11. Furthermore, we determined that ferroptosis may strengthen the immune response by increasing the expression of CD8+ T cells and IFN-γ+ cells while decreasing Treg cells. In general, PTPP may be a potential system for NSCLC treatment.

15.
Antibiotics (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534651

RESUMO

In recent years, traditional antibiotic efficacy outcomes have rapidly diminished due to the advent of drug resistance, and the dose limitation value has increased due to the severe side effect of globalized healthcare. Therefore, novel strategies are required to resensitize resistant pathogens to antibiotics existing in the field and prevent the emergence of drug resistance. In this study, cationic hyperbranched polylysine (HBPL-6) was synthesized using the one-pot polymerization method. HBPL-6 exhibited excellent non-cytotoxicity and bio-solubility properties. The present study also showed that HBPL-6 altered the outer membrane (OM) integrity of Escherichia coli O157:H7, Salmonella typhimurium, and Pseudomonas aeruginosa PAO1 by improving their permeability levels. When administered at a safe dosage, HBPL-6 enhanced the accumulation of rifampicin (RIF) and erythromycin (ERY) in bacteria to restore the efficacy of the antibiotics used. Moreover, the combination of HBPL-6 with colistin (COL) reduced the antibiotic dosage, which was helpful in preventing further drug-resistance outcomes. Therefore, this research provides a new strategy for reducing the dosage of drugs used to combat Gram-negative (G-) bacteria through their synergistic effects.

16.
Food Sci Nutr ; 12(3): 2145-2152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455186

RESUMO

In order to evaluate the effects of chitosan, ε-polylysine, and collagen on the preservation properties of refrigerated Nemipterus virgatus, samples were tested with different treatments for 10 days, namely chitosan, ε-polylysine and collagen (CH + ε-PL + CA), chitosan and ε-polylysine (CH + ε-PL), chitosan and collagen (CH + CA), ε-polylysine and collagen (ε-PL + CA), and the uncoated sample (CK). The results demonstrated that the bio-coating exhibited better preservation effects. The CH + ε-PL + CA, CH + ε-PL, CH + CA, ε-PL + CA treatments could significantly inhibit bacterial growth and retard the increase of total volatile base nitrogen (TVB-N), 2-thiobarbituric acid (TBA), K-value, and total viable counts (TVC) in N. virgatus fillets. The pH of all samples decreased and reached its lowest value on day 6, then increased significantly at the end of the experiment (p < .05). Water-holding capacity (WHC) of all the groups decreased continuously throughout storage, and CK reached 66.03% on day 6, which is significantly lower than CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA (p < .05). On the contrary, the sensory scores of CH + ε-PL + CA, CH + ε-PL, CH + CA, and ε-PL + CA were significantly higher than the control, and the score of CH + ε-PL + CA (p < .05) was the best among all the groups. In terms of texture, CH + PL + CA also showed less cell shrinkage and tighter muscle fiber arrangement compared to other treatments. To sum up, the CH + PL + CA bio-coating proved to be a promising method for maintaining the storage quality of N. virgatus under refrigerated storage conditions.

17.
Food Chem ; 447: 138951, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489883

RESUMO

Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi­hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.


Assuntos
Antibacterianos , Polilisina , Polilisina/química , Ovalbumina , Eletricidade Estática , Simulação de Acoplamento Molecular
18.
Food Chem ; 446: 138831, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402759

RESUMO

Carvacrol is well-known natural antimicrobial compounds. However, its usage in fruit preservation is restricted owing to poor water solubility. Our study aims to address this limitation by combining carvacrol with whey protein isolate (WPI) to form nanoemulsion and enhancing antimicrobial properties and stability of nanoemulsion through ε-polylysine addition, thereby improving their application in fruit preservation. The results indicated that the nanoemulsion exhibited a double-layer structure. The physicochemical properties and storage stability were found to be favorable under the conditions of WPI (0.3 wt% v/v), Carvacrol (0.5 % v/v), and ε-polylysine (0.3 wt% v/v). In addition, the nanoemulsion had inhibitory effects on Staphylococcus aureus, Escherichia coli, and Aspergillus niger at concentrations of minimal inhibition concentration (32, 32, and 200 µg/mL, respectively). In addition, during a 7-day storage period, the nanoemulsion effectively preserved mangoes. Therefore, nanoemulsion could serve as a candidate for control of postharvest mangoes spoilage and extend its period of storage.


Assuntos
Anti-Infecciosos , Cimenos , Mangifera , Polilisina/química , Emulsões/farmacologia , Anti-Infecciosos/farmacologia , Escherichia coli
19.
Front Nutr ; 11: 1299810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419851

RESUMO

This study investigated the effects of nisin combined with ε-polylysine on microorganisms and the refrigerated quality of fresh-cut jackfruit. After being treated with distilled water (control), nisin (0.5 g/L), ε-polylysine (0.5 g/L), and the combination of nisin (0.1 g/L) and ε-polylysine (0.4 g/L), microporous modified atmosphere packaging (MMAP) was carried out and stored at 10 ± 1°C for 8 days. The microorganisms and physicochemical indexes were measured every 2 days during storage. The results indicated that combined treatment (0.1 g/L nisin, 0.4 g/L ε-polylysine) had the best preservation on fresh-cut jackfruit. Compared with the control, combined treatment inhibited microbial growth (total bacterial count, mold and yeast), reduced the weight loss rate, respiratory intensity, polyphenol oxidase and peroxidase activities, and maintained higher sugar acid content, firmness, and color. Furthermore, it preserved higher levels of antioxidant compounds, reduced the accumulation of malondialdehyde and hydrogen peroxide, thereby reducing oxidative damage and maintaining high nutritional and sensory qualities. As a safe application of natural preservatives, nisin combined with ε-polylysine treatment has great application potential in the fresh-cut jackfruit industry.

20.
J Mech Behav Biomed Mater ; 151: 106398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237205

RESUMO

OBJECTIVE: The aim of this study was to synthesize a new bioactive and antibacterial composite by incorporating reactive calcium phosphate and antibacterial polylysine into a resin matrix and evaluate the effect of these fillers on structural analysis, degree of monomer conversion, mechanical properties, and bioactivity of these newly developed polypropylene based dental composites. METHODOLOGY: Stock monomers were prepared by mixing urethane dimethacrylate and polypropylene glycol dimethacrylate and combined with 40 wt% silica to make experimental control (E-C). The other three experimental groups contained a fixed percentage of silica (40 wt%), monocalcium phosphate monohydrate, and ß-tri calcium phosphate (5 wt% each) with varying amounts of polylysine (PL). These groups include E-CCP0 (0 wt% PL), E-CCP5 (5 wt% PL) and E-CCP10 (10 wt% PL). The commercial control used was Filtek™ Z250 3M ESPE. The degree of conversion was assessed by using Fourier transform infrared spectroscopy (FTIR). Compressive strength and Vicker's micro hardness testing were evaluated after 24 h of curing the samples. For bioactivity, prepared samples were placed in simulated body fluid for 0, 1, 7, and 28 days and were analyzed using a scanning electron microscope (SEM). SPSS 23 was used to analyze the data and one-way ANOVA and post hoc tukey's test were done, where the significant level was set ≤0.05. RESULTS: Group E-C showed better mechanical properties than other experimental and commercial control groups. Group E-C showed the highest degree of conversion (72.72 ± 1.69%) followed by E-CCP0 (72.43 ± 1.47%), Z250 (72.26 ± 1.75%), E-CCP10 (71.07 ± 0.19%), and lowest value was shown by E-CCP5 (68.85 ± 7.23%). In shear bond testing the maximum value was obtained by E-C. The order in decreasing value of bond strength is E-C (8.13 ± 3.5 MPa) > Z250 (2.15 ± 1.1 MPa) > E-CCP10 (2.08 ± 2.1 MPa) > E-CCP5 (0.94 ± 0.8 MPa) > E-CCP0 (0.66 ± 0.2 MPa). In compressive testing, the maximum strength was observed by commercial control i.e., Z250 (210.36 ± 18 MPa) and E-C (206.55 ± 23 MPa), followed by E-CCP0 (108.06 ± 19 MPa), E-CCP5 (94.16 ± 9 MPa), and E-CCP10 (80.80 ± 13 MPa). The maximum number of hardness was shown by E-C (93.04 ± 8.23) followed by E-CCP0 (38.93 ± 9.21) > E-CCP10 (35.21 ± 12.31) > E-CCP5 (34.34 ± 12.49) > Z250 (25 ± 2.61). SEM images showed that the maximum apatite layer as shown by E-CCP10 and the order followed as E-CCP10 > E-CCP5 > E-CCP0 >Z250> E-C. CONCLUSION: The experimental formulation showed an optimal degree of conversion with compromised mechanical properties when the polylysine percentage was increased. Apatite layer formation and polylysine at the interface may result in remineralization and ultimately lead to the prevention of secondary caries formation.


Assuntos
Resinas Compostas , Polilisina , Polilisina/química , Resinas Compostas/química , Teste de Materiais , Fosfatos de Cálcio/química , Metacrilatos , Apatitas , Dióxido de Silício , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA