Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
1.
Cancer Lett ; 599: 217152, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094825

RESUMO

Monoclonal antibodies targeting immune checkpoints have been widely applied in gastrointestinal cancer immunotherapy. However, systemic administration of various monoclonal antibodies does not often result in sustained effects in reversing the immunosuppressive tumor microenvironment (TME), which may be due to the spatiotemporal dynamic changes of immune checkpoints. Herein, we reported a novel immune checkpoint reprogramming strategy for gastrointestinal cancer immunotherapy. It was achieved by the sequential delivery of siPD-L1 (siRNA for programmed cell death ligand 1) and pOX40L (plasmid for OX40 ligand), which were complexed with two cationic polymer brush-grafted carbon nanotubes (dense short (DS) and dense long (DL)) designed based on the structural characteristics of nucleic acids and brush architectures. Upon administrating DL/pOX40L for the first three dosages, then followed by DS/siPD-L1 for the next three dosages to the TME, it upregulated the stimulatory checkpoint OX40L on dendritic cells (DCs) and downregulated inhibitory checkpoint PD-L1 on tumor cells and DCs in a sequential reprogramming manner. Compared with other combination treatments, this sequential strategy drastically boosted the DCs maturation, and CD8+ cytotoxic T lymphocytes infiltration in tumor site. Furthermore, it could augment the local antitumor response and improve the T cell infiltration in tumor-draining lymph nodes to reverse the peripheral immunosuppression. Our study demonstrated that sequential nucleic acid delivery strategy via personalized nanoplatforms effectively reversed the immunosuppression status in both tumor microenvironment and peripheral immune landscape, which significantly enhanced the systemic antitumor immune responses and established an optimal immunotherapy strategy against gastrointestinal cancer.


Assuntos
Antígeno B7-H1 , Células Dendríticas , Neoplasias Gastrointestinais , Imunoterapia , Ligante OX40 , Microambiente Tumoral , Animais , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Imunoterapia/métodos , Neoplasias Gastrointestinais/imunologia , Neoplasias Gastrointestinais/terapia , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/genética , Antígeno B7-H1/imunologia , Humanos , Células Dendríticas/imunologia , Linhagem Celular Tumoral , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Camundongos Endogâmicos C57BL , Inibidores de Checkpoint Imunológico/administração & dosagem , Inibidores de Checkpoint Imunológico/farmacologia , Feminino
2.
Heliyon ; 10(15): e34668, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39161811

RESUMO

Thermoresponsive polymer brushes have attracted considerable research attention owing to their unique properties. Herein, we developed silica beads grafted with poly(N-isopropylacrylamide (NIPAAm)-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butyl acrylamide (tBAAm) and P(NIPAAm-co-APTAC-co-n-butyl methacrylate(nBMA)) brushes. The carbon, hydrogen, and nitrogen elemental analysis of the copolymer-grated silica beads revealed the presence of a large amount of the grafted copolymer on the silica beads. The electrostatic and hydrophobic interactions between biomolecules and prepared copolymer brushes were analyzed by observing their elution behaviors via high-performance liquid chromatography using the copolymer-brush-modified beads as the stationary phase. Adenosine nucleotides were retained in the bead-packed columns, which was attributed to the electrostatic interaction between the copolymers and adenosine nucleotides. Insulin was adsorbed on the copolymer brushes at high temperatures, which was attributed to its electrostatic and hydrophobic interactions with the copolymer. Similar adsorption behavior was observed in case of albumin. Further, at a low concentration of the phosphate buffer solution, albumin was adsorbed onto the copolymer brushes even at relatively low temperatures owing to its enhanced electrostatic interaction with the copolymer. These results indicated that the developed thermoresponsive strong cationic copolymer brushes can interact with peptides and proteins through a combination of electrostatic and temperature-modulated hydrophobic interactions. Thus, the developed copolymer brushes exhibits substantial potential for application in chromatographic matrices for the analysis and purification of peptides and proteins.

3.
J Chromatogr A ; 1732: 465227, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116685

RESUMO

Styrene-maleic acid (SMA) copolymer has received much attention for its excellent solubilization characteristics. In this work, SMA copolymer brush-based chromatographic stationary phases were exploited and developed for the first time. First, SMA copolymer brush was in situ grown on the surface of spherical silica via living/controlled reversible addition-fragmentation chain transfer (RAFT) polymerization method. Subsequently, as a proof-of-concept demonstration, the copolymer was esterified by diethylene glycol mono-2-ethylhexyl ether (DGME) and 2-(2-ethylhexyloxy) ethanol (EHOE), respectively. The obtained Sil-SMA-DGME and Sil-SMA-EHOE copolymer-brush chromatographic stationary phases were characterized by transmission electron microscopy, Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, and thermogravimetric analysis, respectively. The chromatographic retention mechanism indicated that both the two packed columns exhibited hydrophilic/reverse mixed-mode retention modes. The maximum column efficiency was up to 71,000 N/m. The chromatographic separation performance evaluation indicated that the novel kind of stationary phases had excellent separation capabilities for hydrophilic, hydrophobic compounds and phospholipid standards. In addition, by combination with mass spectrometry identification, the Sil-SMA-DGME column was further exploited for separation and identification of phospholipids in human lung cancer cells. Totally, 9 classes including 186 phospholipid species were successfully identified. The results demonstrated the promising application prospects of the novel kind of SMA copolymer-brush chromatographic stationary phases.


Assuntos
Maleatos , Dióxido de Silício , Maleatos/química , Dióxido de Silício/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Poliestirenos/química , Esterificação , Cromatografia Líquida de Alta Pressão/métodos , Polímeros/química
4.
Macromol Biosci ; : e2400194, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073313

RESUMO

Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.

5.
ACS Appl Mater Interfaces ; 16(31): 40455-40468, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39072446

RESUMO

Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.


Assuntos
Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/química , Proteína Morfogenética Óssea 4/metabolismo , Humanos , Ácidos Sulfônicos/química , Metacrilatos/química , Propriedades de Superfície , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo
6.
Int J Biol Macromol ; 277(Pt 1): 134105, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39048002

RESUMO

Extracted from Platycodon grandiflorum, platycodon grandiflorum polysaccharides (PGPs) with diverse biological functions have been extensively employed for modification and fabrication of hydrogels for biomedical applications, such as wound dressings. However, since the lack of effective structural design, the reported polysaccharide-based hydrogel dressings are still suffered from structural failures and limited bio-functionality. Herein, we demonstrate a facile and general strategy to fabricate a supramolecular hydrogel composed of PGP-based polymer brush as building blocks combined with a Ca2+-mediated self-assembly process. The specific polymer brush with high branch functionality was achieved with polyacrylamide arms evenly grown on the PGP (grafting efficiency as high as 80 %) with series of chemical modifications. With above structural merits, the resulting hydrogel with densely crosslinked polymer brush featured enhanced mechanical strength as well as self-healing, and shear-thinning behaviors. Further biocompatible investigation indicated the as-prepared hydrogels with admirable performances in self-adhesion (adhesive strength of 16.7-79.5 kPa), a pH-responsive swelling ratio as high as 44 at pH 5.4, and pH-responsive degradation. They also showed antioxidant capacity by scavenging DPPH activity of nearly 80 % in 20 min, hemocompatibility, cell viability and cell migration. Impressively, the PGP-based polymer brush hydrogel served as a wound dressing revealed significant acceleration on wound closure.


Assuntos
Bandagens , Hidrogéis , Polissacarídeos , Hidrogéis/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Concentração de Íons de Hidrogênio , Animais , Polímeros/química
7.
Polymers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732717

RESUMO

In recent years, a great deal of work has been devoted to the development of thermoresponsive polymers that can be made into new types of smart materials. In this paper, a branched polymer, HTPB-g-(PNIPAM/PEG), with polyolefin chain segments as the backbone and having polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) as side chains was synthesized by ATRP and click reactions using N3-HTPB-Br as the macroinitiator. This initiator was designed and synthesized using hydroxyl-terminated polybutadiene (HTPB) as the substrate. The temperature-responsive behavior of the branched polymer was investigated. The lower critical solution temperature (LCST) of the branched polymer was determined by ultraviolet and visible spectrophotometry (UV-vis) and was found to be 35.2 °C. The relationship between the diameter size of micelles and temperature was determined by dynamic light scattering (DLS). It was found that the diameter size changed at 36 °C, which was nearly consistent with the result obtained by UV-vis. The results of the study indicate that HTPB-g-(PNIPAM/PEG) is a temperature-responsive polymer. At room temperature, the polymer can self-assemble into composite micelles, with the main chain as the core and the branched chain as the shell. When the temperature was increased beyond LCST, the polyolefin main chain along with the PNIPAM branched chain assembled to form the nucleus, and the PEG branched chain constituted the shell.

8.
ACS Appl Mater Interfaces ; 16(21): 27761-27766, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748552

RESUMO

Surface-initiated iron(0)-mediated controlled radical polymerization (SI-Fe0CRP) with low toxicity and excellent biocompatibility is promising for the fabrication of biofunctional polymer coatings. However, the development of Fe(0)-based catalysts remains limited by the lower dissociation activity of the Fe(0) surface in comparison to Cu(0). Here, we found that, by simply polishing the Fe(0) plate surface with sandpaper, the poly(methacryloyloxy)ethyl trimethylammonium chloride brush growth rate has been increased significantly to 3.3 from 0.14 nm min-1 of the pristine Fe(0) plate. The excellent controllability of roughness-mediated SI-Fe0CRP can be demonstrated by customizing multicompartment brushes and triblock brushes. Furthermore, we found that the resulting polymer brush coatings exhibit remarkably low water adhesion (0.097 mN) and an outstanding drag reduction rate of 52% in water. This work provides a promising strategy for regulating the grafting rate of polymer brushes via SI-Fe0CRP for biocompatible marine drag reduction coatings.

9.
ACS Appl Mater Interfaces ; 16(19): 25236-25245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700668

RESUMO

Constructing antifouling surfaces is a crucial technique for optimizing the performance of devices such as water treatment membranes and medical devices in practical environments. These surfaces are achieved by modification with hydrophilic polymers. Notably, zwitterionic (ZI) polymers have attracted considerable interest because of their ability to form a robust hydration layer and inhibit the adsorption of foulants. However, the importance of the molecular weight and density of the ZI polymer on the antifouling property is partially understood, and the surface design still retains an empirical flavor. Herein, we individually assessed the influence of the molecular weight and density of the ZI polymer on protein adsorption through machine learning. The results corroborated that protein adsorption is more strongly influenced by density than by molecular weight. Furthermore, the distribution of predicted protein adsorption against molecular weight and polymer density enabled us to determine conditions that enhanced (or weaken) antifouling. The relevance of this prediction method was also demonstrated by estimating the protein adsorption over a wide range of ionic strengths. Overall, this machine-learning-based approach is expected to contribute as a tool for the optimized functionalization of materials, extending beyond the applications of ZI polymer brushes.


Assuntos
Aprendizado de Máquina , Polímeros , Adsorção , Polímeros/química , Proteínas/química , Propriedades de Superfície , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Animais , Peso Molecular
10.
ACS Appl Mater Interfaces ; 16(12): 15308-15321, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477047

RESUMO

Colloidal photonic composites (CPCs) are unique optical materials that combine flexible and responsive polymers with colloidal photonic crystals, and they have promising applications in colorful displays, optical anticounterfeiting, and visual sensors. However, conventional self-assembly strategies for constructing CPCs via solvent evaporation have faced limitations due to the meticulous regulation required during the evaporation process and typically long preparation durations. Here, we present an external force method to achieve a long-range ordered arrangement in CPCs by hot-pressing poly(2-[[(butylamino)carbonyl]oxy]ethyl acrylate (PBCOE)) brush-grafted silica colloidal particles (SiO2-g-PBCOE). We show that the hot-pressing conditions (i.e., temperature and pressure) and the silica volume fraction (φsilica) of the SiO2-g-PBCOE colloidal particles play crucial roles in determining their ordering and optical properties. By optimization of the hot-pressing temperature up to 100 °C and pressure of 5 MPa, a long-range ordered arrangement of SiO2-g-PBCOE colloidal particles with a φsilica of 20.3% can be achieved. For the effect of structural features, our findings reveal that SiO2-g-PBCOE colloidal particles featuring a higher φsilica are more prone to obtain a long-range ordered arrangement compared to a lower φsilica under hot-pressing conditions at relatively low temperature and pressure (50 °C and 5 MPa), which is mainly attributed to the chain entanglement and hydrogen bonding interactions induced by grafted longer polymer brushes, leading to additional energy inputs and weakening the ordering. Significantly, the critical φsilica (φc) of SiO2-g-PBCOE colloidal particles is discerned, strongly influencing the optical properties of the hot-pressed films. Specifically, a hot-pressed SiO2-g-PBCOE film with a critical φsilica of 29.3% displays enhanced optical properties characterized by intensified reflection peaks, narrowed full width at half-maximum (FWHM), and brilliant structural colors. Notably, in this work, we reveal the mechanism of hot-pressing-driven core-shell colloidal particle ordering and the key factors affecting the ordering of colloidal particles, i.e., chain entanglement and hydrogen-bonding interactions, which play a crucial role in obtaining CPCs with controllable structures. Moreover, angle-dependent structural color is observed in the hot-pressed SiO2-g-PBCOE film with a φsilica content of 29.3% due to the unique attributes of the highly ordered arrangement, while the films exhibit mechanochromic properties due to chain entanglement and hydrogen bonding interactions. This work provides valuable insights into the rapid construction of highly ordered CPCs and establishes a solid foundation for external force-assisted ordering of colloidal particles.

11.
Nano Lett ; 24(11): 3307-3314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456631

RESUMO

Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (Tg*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the Tg*.

12.
Acta Biomater ; 178: 111-123, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423351

RESUMO

High-performance catheters are essential for interventional surgeries, requiring reliable anti-adhesive and lubricated surfaces. This article develops a strategy for constructing high-density sulfobetaine zwitterionic polymer brushes on the surface of catheters, utilizing dopamine and sodium alginate as the primary intermediate layers, where dopamine provides mussel-protein-like adhesion to anchor the polymer brushes to the catheter surface. Hydroxyl-rich sodium alginate increases the number of grafting sites and improves the grafting mass by more than 4 times. The developed high-density zwitterionic polymer brushes achieve long-lasting and effective lubricity (µ<0.0078) and are implanted in rabbits for four hours without bio-adhesion and thrombosis in the absence of anticoagulants such as heparin. Experiments and molecular dynamics simulations demonstrate that graft mass plays a decisive role in the lubricity and anti-adhesion of polymer brushes, and it is proposed to predict the anti-adhesion of polymer brushes by their lubricity to avoid costly and time-consuming bioassays during the development of amphoteric polymer brushes. A quantitative influence of hydration in the anti-adhesion properties of amphiphilic polymer brushes is also revealed. Thus, this study provides a new approach to safe, long-lasting lubrication and anticoagulant surface modification for medical devices in contact with blood. STATEMENT OF SIGNIFICANCE: High friction and bioadhesion on medical device surfaces can pose a significant risk to patients. In response, we have developed a safer, simpler, and more application-specific surface modification strategy that addresses both the lubrication and anti-bioadhesion needs of medical device surfaces. We used dopamine and sodium alginate as intermediate layers to drastically increase the grafting density of the zwitterionic brushes and enabled the modified surfaces to have an extremely low coefficient of friction (µ = 0.0078) and to remain non-bioadhesive for 4 hours in vivo. Furthermore, we used molecular dynamics simulations to gain insight into the mechanisms behind the superior anti-adhesion properties of the high-density polymer brushes. Our work contributes to the development and application of surface-modified coatings.


Assuntos
Fibrinolíticos , Polímeros , Animais , Humanos , Coelhos , Polímeros/farmacologia , Dopamina , Lubrificação , Propriedades de Superfície , Alginatos/farmacologia
13.
J Chromatogr A ; 1713: 464541, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38041978

RESUMO

To in-depth explore the action mechanism of C-reactive protein (CRP) and precisely study its signaling pathways, it is essential to acquire high-purity CRP while preserving its intact structure and functionality. In this study, we propose and fabricate a high-density 2-methacryloyloxyethyl phosphorylcholine (MPC)-modified membrane roll column (MPC-MRC) using a surface-initiated atom transfer radical polymerization (SI-ATRP) approach, which can overcome these limitations (long incubation time and low adsorption capacity) of conventional enrichment materials. The MPC-MRC incorporates a high-density 2-hydroxyethyl methacrylate polymer brush to prevent non-specific protein adsorption and multiple MPC polymer brush layers for high-performance enrichment of CRP in the company of calcium ions. Furthermore, the MPC-MRC exhibits high permeability, hydrophilicity, and mechanical strength. Compared to previous technologies, this novel material demonstrates significantly higher CRP binding capacity (310.3 mg/g), shorter processing time (only 15 min), and lower cost (only 12 USD/column). Notably, the MPC-MRC enables fast and effective purification of CRP from both human and rat serum, exhibiting good selectivity, recovery (> 91.3 %), and purity (> 95.2 %). Thus, this proposed purification approach based on MPC-MRC holds great potential for target protein enrichment from complex samples, as well as facilitating in-depth studies of its biological functions.


Assuntos
Biomimética , Proteína C-Reativa , Animais , Humanos , Ratos , Proteína C-Reativa/química , Metacrilatos/química , Polímeros/química , Fosforilcolina/química , Propriedades de Superfície , Adsorção
14.
Colloids Surf B Biointerfaces ; 234: 113671, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039822

RESUMO

A critical problem with the use of biomaterial implants is associated with bacterial adhesion on the surface of implants and in turn the biofilm formation. Among different strategies that have been reported to resolve this dilemma, surface design combined with both antiadhesive and antimicrobial properties has proven to be highly effective. Physiochemical properties of polymer brush coatings possess non-adhesive capability against bacterial adhesion and create a niche for further functionalization. The current study aims to evaluate the effect of antibiotics incorporated into the polymer brush on bacterial adhesion and biofilm formation. Brushes made of zwitterionic polymers were synthesized, functionalized with vancomycin via both physical and chemical conjugation, and grafted onto the silicon rubber surfaces. Antibacterial and antiadhesive measurements of designed coated biomaterials were mediated through the use of a parallel plate flow chamber against biofilm growth developed by Staphylococcus aureus and Escherichia coli over a period of 24 h. The analysis of biofilm growth on designed coated biomaterials showed that the pristine coated zwitterionic brushes are significantly resistant to bacterial adhesion and biofilm formation but not in the polymer brush coating incorporated with antibiotics.


Assuntos
Aderência Bacteriana , Polímeros , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Biofilmes , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 15(42): 49012-49021, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37824473

RESUMO

The nanostructured polymer film introduces a novel mechanism of nonenzymatic cell harvesting by decoupling solid cell-adhesive and soft stimulus-responsive cell-disjoining areas on the surface. The key characteristics of this architecture are the decoupling of adhesion from detachment and the impermeability to the integrin protein complex of the adhesive domains. This surface design eliminates inherent limitations of thermoresponsive coatings, namely, the necessity for the precise thickness of the coating, grafting or cross-linking density, and material of the basal substrate. The concept is demonstrated with nanostructured thermoresponsive films made of cell-adhesive epoxy photoresist domains and cell-disjoining poly(N-isopropylacrylamide) brush domains.


Assuntos
Polímeros Responsivos a Estímulos , Células Cultivadas , Adesão Celular , Resinas Acrílicas/química , Temperatura , Propriedades de Superfície
16.
J Comput Chem ; 44(28): 2230-2239, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37596907

RESUMO

Polymer-grafted hybrid materials have been ubiquitously employed in various engineering applications. The design of these hybrid materials with superior performances requires a molecularly detailed understanding of the structure and dynamics of the polymer brushes and their interactions with the grafting substrate. Molecular dynamics (MD) simulations are very well suited for the study of these materials which can provide molecular insights into the effects of polymer composition and length, grafting density, substrate composition and curvatures, and nanoconfinement. However, few existing tools are available to generate such systems, which would otherwise reduce the barrier of preparation for such systems to enable high throughput simulations. Here polyGraft, a general, flexible, and easy to use Python program, is introduced for automated generation of molecular structure and topology of polymer grafted hybrid materials for MD simulations purposes, ranging from polymer brushes grafted to hard substrates, to densely grafted bottlebrush polymers. polyGraft is openly accessible on GitHub (https://github.com/nanogchen/polyGraft).

17.
ACS Appl Mater Interfaces ; 15(34): 41193-41200, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37585479

RESUMO

Ice is omnipresent in our daily life and possesses intrinsic slipperiness as a result of the formation of a quasi-liquid layer. Thus, the functional surfaces inspired by ice show great prospects in widespread fields from surface lubrication to antifouling coatings. Herein, we report an ice-inspired polymeric slippery surface (II-PSS) constructed by a self-lubricating liquid layer and a densely surface-grafted polymer brush. The polymer brush layer could act as a homogeneous matrix to capture lubricant molecules via strong and dynamic dipole-dipole interactions to form a stable quasi-liquid layer that resembles the ice surface. The II-PSS can be easily fabricated on various solid substrates (e.g., silicon, glass, aluminum oxide, plastics, etc.) with excellent smoothness (roughness of ∼0.4 nm), optical transmittance (∼94.5%), as well as repellence toward diverse liquids with different surface tensions (22.3-72.8 mN m-1), pH values (1-14), salinity, and organic pollutants. Further investigation shows that the II-PSS exhibits extremely low attachment for proteins and marine organisms (e.g., algae and mussels) for over one month. These results demonstrate a robust and promising strategy for high-performance antifouling coatings.

18.
Polymers (Basel) ; 15(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37571196

RESUMO

A simple and compact intensity-interrogated terahertz (THz) relative humidity (RH) sensing platform is successfully demonstrated in experiments on the basis of combining a porous polymer sensing membrane and a continuous THz electronic system. The RH-sensing membrane is fabricated by surface modification of a porous polymer substrate with hydrophilic and photosensitive copolymer brushes via a UV-induced graft-polymerization process. The intensity interrogation sensing scheme indicated that the power reduction of the 0.4 THz wave is dependent on the grafting density of the copolymer brushes and proportional to the RH percent levels in the humidity-controlled air-sealed chamber. This finding was verified by the water contact angle measurement. Based on the slope of the proportional relation, the best sensitivity of the hydrophilic surface-modified sensing membrane was demonstrated at 0.0423 mV/% RH at the copolymer brush density of 1.57 mg/mm3 grafted on the single side of the sensing membrane. The sensitivity corresponds to a detection limit of approximately 1% RH. The THz RH sensing membrane was proven to exhibit the advantages of low loss, low cost, flexibility, high sensitivity, high RH resolution, and a wide RH working range of 25-99%. Thus, it is a good candidate for novel applications of wearable electronics, water- or moisture-related industrial and bio-sensing.

19.
Angew Chem Int Ed Engl ; 62(41): e202308008, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550243

RESUMO

Slippery covalently-attached liquid surfaces (SCALS) with low contact angle hysteresis (CAH, <5°) and nanoscale thickness display impressive anti-adhesive properties, similar to lubricant-infused surfaces. Their efficacy is generally attributed to the liquid-like mobility of the constituent tethered chains. However, the precise physico-chemical properties that facilitate this mobility are unknown, hindering rational design. This work quantifies the chain length, grafting density, and microviscosity of a range of polydimethylsiloxane (PDMS) SCALS, elucidating the nanostructure responsible for their properties. Three prominent methods are used to produce SCALS, with characterization carried out via single-molecule force measurements, neutron reflectometry, and fluorescence correlation spectroscopy. CO2 snow-jet cleaning was also shown to reduce the CAH of SCALS via a modification of their grafting density. SCALS behavior can be predicted by reduced grafting density, Σ, with the lowest water CAH achieved at Σ≈2. This study provides the first direct examination of SCALS grafting density, chain length, and microviscosity and supports the hypothesis that SCALS properties stem from a balance of layer uniformity and mobility.

20.
ACS Appl Mater Interfaces ; 15(24): 29384-29395, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37285651

RESUMO

Nanoporous membranes play a critical role in numerous separations on laboratory and industrial scales, ranging from water treatment to biotechnology. However, few strategies exist that allow for the preparation of mechanically robust nanoporous membranes whose separation properties can be easily tuned. Here, we introduce a new family of tunable nanoporous membranes based on nanoparticles decorated with temperature-responsive polymer brushes. We prepared mechanically robust membranes from hairy nanoparticles (HNPs) carrying PNIPAM polymer brushes. We assembled the HNPs into thin films through pressure-driven deposition of nanoparticle suspensions and measured the permeability and filtration cutoff of these membranes at different temperatures. The membrane pore diameter at room temperature varied between 10 and 30 nm depending on the polymer length. The water permeability of these membranes could be controlled by temperature, with the effective pore diameter increasing by a factor of 3-6 (up to 100 nm) when the temperature was increased to 60 °C. The size selectivity of these membranes in the filtration of nanoparticles could also be attenuated by temperature. Molecular dynamics computer simulations of a coarse-grained HNP model show that temperature-sensitive pores sizes are consistent with our experimental results and reveal the polymer configurations responsible for the observed filtration membrane permeability. We expect that these membranes will be useful for separations and in the preparation of responsive microfluidic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA