Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
1.
Adv Mater ; : e2404880, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240007

RESUMO

Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39320115

RESUMO

Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N2 pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP. Noteworthy, PPNs are 2 orders of magnitude cheaper than the porous aromatic frameworks previously used to control PTMSP aging. A variety of experimental and computational techniques, such as Positron Annihilation Lifetime Spectroscopy (PALS), free volume measurements, cross-polarization/magic angle spinning (CP/MAS) 13C NMR, transport measurements and molecular dynamics (MD) simulations were used to uncover the molecular mechanisms leading to enhanced aging resistance. We show that partial PTMSP chain adsorption into the PPN porosity reduces the PTMSP local segmental mobility, leading to improved aging resistance. Permeability coefficients were broken into their elementary sorption and diffusion contributions, to elucidate the mechanism by which the reduced PTMSP local segmental mobility affects selectivity in gas separation applications. Finally, we demonstrate that in these systems, where both chemical and physical interactions take place, transport coefficients must be corrected for thermodynamic nonidealities to avoid erroneous interpretation of the results.

3.
Angew Chem Int Ed Engl ; : e202411172, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158508

RESUMO

The integration of mechanically interlocked molecules (MIMs) into polymeric materials has led to the development of mechanically interlocked polymers (MIPs). One class of MIPs that have gained attention are slide-ring gels (SRGs), which are generally accessed by crosslinking rings on a main-chain polyrotaxane. The mobility of the interlocked crosslinking moieties along the polymer backbone imparts enhanced properties onto these networks. An alternative synthetic approach to SRGs is to use a doubly threaded ring as the crosslinking moiety, yielding doubly threaded slide-ring gel networks (dt-SRGs). In this study, a photo-curable ligand-containing thread was used to assemble a series of metal-templated pseudo[3]rotaxane crosslinkers that allow access to MIPs that contain doubly threaded interlocked rings. The physicochemical and mechanical properties of these dt-SRGs with varying size of the ring crosslinking moieties were investigated and compared to an entangled gel (EG) prepared by polymerizing the metal complex of the photo-curable ligand-containing thread, and a corresponding covalent gel (CG). Relative to the EG and CG, the dt-SRGs exhibit enhanced swelling behavior, viscoelastic properties, and stress relaxation characteristics. In addition, the macroscopic properties of dt-SRGs could be altered by "locking" ring mobility in the structure through remetalation, highlighting the impact of the mobility of the crosslinks.

4.
Polymers (Basel) ; 16(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125175

RESUMO

This study investigates the crosslinking dynamics and swelling properties of pH-responsive poly(ethylene glycol) (PEG)/poly(acrylic acid) (PAA) interpenetrating polymer network (IPN) hydrogels. These hydrogels feature denser crosslinked networks compared to PEG single network (SN) hydrogels. Fabrication involved a two-step UV curing process: First, forming PEG-SN hydrogels using poly(ethylene glycol) diacrylate (PEGDA) through UV-induced free radical polymerization and crosslinking reactions, then immersing them in PAA solutions with two different molar ratios of acrylic acid (AA) monomer and poly(ethylene glycol) dimethacrylate (PEGDMA) crosslinker. A subsequent UV curing step created PAA networks within the pre-fabricated PEG hydrogels. The incorporation of AA with ionizable functional groups imparted pH sensitivity to the hydrogels, allowing the swelling ratio to respond to environmental pH changes. Rheological analysis showed that PEG/PAA IPN hydrogels had a higher storage modulus (G') than PEG-SN hydrogels, with PEG/PAA-IPN5 exhibiting the highest modulus. Thermal analysis via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) indicated increased thermal stability for PEG/PAA-IPN5 compared to PEG/PAA-IPN1, due to higher crosslinking density from increased PEGDMA content. Consistent with the storage modulus trend, PEG/PAA-IPN hydrogels demonstrated superior mechanical properties compared to PEG-SN hydrogels. The tighter network structure led to reduced water uptake and a higher gel modulus in swollen IPN hydrogels, attributed to the increased density of active network strands. Below the pKa (4.3) of acrylic acid, hydrogen bonds between PEG and PAA chains caused the IPN hydrogels to contract. Above the pKa, ionization of PAA chains induced electrostatic repulsion and osmotic forces, increasing water absorption. Adjusting the crosslinking density of the PAA network enabled fine-tuning of the IPN hydrogels' properties, allowing comprehensive comparison of single network and IPN characteristics.

5.
Gels ; 10(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39057486

RESUMO

We use coarse-grained molecular dynamics simulations to study deformation of networks and gels of linear and brush strands in both linear and nonlinear deformation regimes under constant pressure conditions. The simulations show that the Poisson ratio of networks and gels could exceed 0.5 in the nonlinear deformation regime. This behavior is due to the ability of the network and gel strands to sustain large reversible deformation, which, in combination with the finite strand extensibility results in strand alignment and monomer density, increases with increasing strand elongation. We developed a nonlinear network and gel deformation model which defines conditions for the Poisson ratio to exceed 0.5. The model predictions are in good agreement with the simulation results.

6.
ACS Appl Mater Interfaces ; 16(32): 42736-42747, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082474

RESUMO

Ceramic-polymer composite solid electrolytes (CSEs) have attracted great attention by combining the advantages of polymer electrolytes and inorganic ceramic electrolytes. Herein, Li10GeP2S12 (LGPS) particles are incorporated into poly(ethylene oxide) (PEO)-based reversibly interlocked polymer networks (RILNs) derived from the topological rearrangement of two PEO networks cross-linked by reversible imine bonds and disulfide linkages. A series of highly ionic conductive, self-healing CSEs are obtained accordingly. The interlocking architecture successfully inhibits PEO crystallization, increasing the amorphous phase for Li ion transportation, and stabilizes the conductive pathways of LGPS particles by its unique confinement effect. Meanwhile, the LGPS particles cooperate with the RILN matrix, forming a filler-polymer interfacial phase for additional Li ion transportation and strengthening and toughening the resultant CSEs via the strong intermolecular Li+-O2- interactions. Furthermore, the dynamic characteristics of the included reversible bonds ensure a multiple intrinsic self-healing capability. Consequently, the CSEs containing 15 wt % LGPS deliver a high ionic conductivity (1.06 × 10-3 S cm-1) and high Li ion transference number (∼0.6) at 25 °C, a wide electrochemical stability window (>4.9 V), good mechanical properties (0.63 MPa, 377%), and a stable CSE/Li anode interface. The integrated Li/CSE/LiFePO4 battery exhibits a specific discharge capacity of 110.8 mAh g-1 at 1 C (25 °C) and a capacity retention of 76.9% after 200 cycles. Thanks to the healability, the damaged CSEs can regain the structural integrity, ion conductive capability, and cycling performance of the assembled cells. The present work provides an effective strategy to fabricate CSEs for lithium metal batteries that are workable at ambient temperature.

7.
Polymers (Basel) ; 16(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891552

RESUMO

The enhancement of display performance and durability in polymer-stabilized vertical alignment liquid crystal and the liquid crystal are negative liquid crystals, which can be vertically aligned under the action of a vertical orientation layer and an electric field. Devices (PSVA LCDs) are crucial for advancing LCD technology. This study aims to investigate the electro-optical characteristics of PSVA LCDs by varying polymerization monomer concentrations. Using both simulations via TechWiz LCD 3D and experimental methods, such as polymer-induced phase separation, we developed an optoelectronic testing framework to assess voltage transmittance and response times. In our main findings, we show that an increase in polymeric monomer concentration from 3% to 7% resulted in a 67% increase in threshold voltage and a 44% decrease in saturation voltage. The on-state response time increased by about a factor of three, while the off-state response time decreased by about a factor of three. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. The alignment of our simulation results with experimental data validates our methodology, offering the potential of simulation tools as a pivotal resource in the PSVA LCDs. These advancements promise significant improvements in PSVA LCD performance and durability.

8.
ACS Nano ; 18(20): 13061-13072, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38721824

RESUMO

Various strain isolation strategies that combine rigid and stretchable regions for stretchable electronics were recently proposed, but the vulnerability of inorganic materials to mechanical stress has emerged as a major impediment to their performance. We report a strain-isolation system that combines heteropolymers with different elastic moduli (i.e., hybrid stretchable polymers) and utilize it to construct a rugged island-bridge inorganic electronics system. Two types of prepolymers were simultaneously cross-linked to form an interpenetrating polymer network at the rigid-stretchable interface, resulting in a hybrid stretchable polymer that exhibited efficient strain isolation and mechanical stability. The system, including stretchable micro-LEDs and microheaters, demonstrated consistent operation under external strain, suggesting that the rugged island-bridge inorganic electronics mounted on a locally strain-isolated substrate offer a promising solution for replacing conventional stretchable electronics, enabling devices with a variety of form factors.

9.
Chempluschem ; : e202400270, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752655

RESUMO

Metallo-supramolecular polymer networks (MSPNs) are fabricated from the crosslinking of polymers by discrete supramolecular coordination complexes. Due to the availability of various coordination complexes, e. g., 2D macrocycles and 3D nanocages, the MSPNs have been recently developed with broadly tunable visco-elasticity and enriched functions inherited from the coordination complexes. The coordination complexes possess enriched topologies and unique structural relaxation dynamics, rendering them the capability to break the traditional tradeoffs of polymer systems for the design of materials with enhanced mechanical performance. The structure-property relationship studies are critical for the material-by-design of MSPNs, while the spatiotemporal investigations are desired for the exploration of dynamics information. The work summarizes recent studies on the unique ligand-exchange kinetics and the multi-level structural relaxation dynamics of MSPNs. The MSPNs' mechanical properties can be quantitatively correlated with the dynamics for understanding the structure-property relationship. This concept will not only serve to attract more researchers to engage in the study of the structure-activity relationship of MSPNs but also inspire innovative research findings pertaining to the application of MSPNs.

10.
Small ; 20(35): e2401528, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38634219

RESUMO

The role of tannins (TA), a well-known abundant and ecologically friendly chelating ligand, in metal capture has long been studied. Different kinds of TA-containing adsorbents are synthesized for uranium capture, while most adsorbents suffer from unfavorable adsorption kinetics. Herein, the design and preparation of a TA-containing 2D crosslinked network adsorbent (TANP) is reported. The ≈1.8-nanometer-thick TANP films curl up into micrometer-scale pores, which contribute to fast mass transfer and full exposure of active sites. The coordination environment of uranyl (UO2 2+) ions is explored by integrated analysis of U L3-edge XANES and EXAFS. Density functional theory calculations indicate the energetically favorable UO2 2+ binding. Consequently, TANP with excellent adsorption kinetics presents a high uranium capture capacity (14.62 mg-U g-Ads-1) and a high adsorption rate (0.97 mg g-1 day-1) together with excellent selectivity and biofouling resistance. Life cycle assessment and cost analysis demonstrate that TANP has tremendous potential for application in industrial-scale uranium extraction from seawater.

11.
Angew Chem Int Ed Engl ; 63(27): e202400849, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656826

RESUMO

As a critical radioactive anionic contaminant, traditional adsorbents primarily remove iodate (IO3 -) through ion exchange or hard acid-hard base interactions, but suffer from limited affinity and capacity. Herein, employing the synergistic effect of ion exchange and redox, we successfully synthesized a redox-active cationic polymer network (SCU-CPN-6, [C9H10O2N5 ⋅ Cl]n) by merging guanidino groups with ion-exchange capability and phenolic groups with redox ability via a Schiff base reaction. SCU-CPN-6 exhibits a groundbreaking adsorption capacity of 896 mg/g for IO3 -. The inferior adsorption capacities of polymeric networks containing only redox (~0 mg/g) or ion exchange (232 mg/g) fragments underscore the synergistic "1+1>2" effect of the two mechanisms. Besides, SCU-CPN-6 shows excellent uptake selectivity for IO3 - in the presence of high concentrations of SO4 2-, Cl-, and NO3 -. Meanwhile, a high distribution coefficient indicates its exemplary deep-removal performance for low IO3 - concentration. The synergic strategy not only presents a breakthrough solution for the efficient removal of IO3 - but also establishes a promising avenue for the design of advanced adsorbents for diverse applications.

12.
Environ Res ; 252(Pt 3): 118953, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636643

RESUMO

Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.


Assuntos
Gases , Membranas Artificiais , Poliuretanos , Poliuretanos/química , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química
13.
Adv Mater ; 36(27): e2402282, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38577824

RESUMO

Biological tissues, such as tendons or cartilage, possess high strength and toughness with very low plastic deformations. In contrast, current strategies to prepare tough hydrogels commonly utilize energy dissipation mechanisms based on physical bonds that lead to irreversible large plastic deformations, thus limiting their load-bearing applications. This article reports a strategy to toughen hydrogels using fibrillar connected double networks (fc-DN), which consist of two distinct but chemically interconnected polymer networks, that is, a polyacrylamide network and an acrylated agarose fibril network. The fc-DN design allows efficient stress transfer between the two networks and high fibril alignment during deformation, both contributing to high strength and toughness, while the chemical crosslinking ensures low plastic deformations after undergoing high strains. The mechanical properties of the fc-DN network can be readily tuned to reach an ultimate tensile strength of 8 MPa and a toughness of above 55 MJ m-3, which is 3 and 3.5 times more than that of fibrillar double network hydrogels without chemical connections, respectively. The application potential of the fc-DN hydrogel is demonstrated as load-bearing damping material for a jointed robotic lander. The fc-DN design provides a new toughening mechanism for hydrogels that can be used for soft robotics or bioelectronic applications.

14.
Adv Mater ; 36(26): e2313961, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593210

RESUMO

The advent of covalent adaptable networks (CANs) through the incorporation of dynamic covalent bonds has led to unprecedented properties of macromolecular systems, which can be engineered at the molecular level. Among the various types of stimuli that can be used to trigger chemical changes within polymer networks, light stands out for its remote and spatiotemporal control under ambient conditions. However, most examples of photoactive CANs need to be transparent and they exhibit slow response, side reactions, and limited light penetration. In this vein, it is interesting to understand how molecular engineering of optically active dynamic linkages that offer fast response to visible light can impart "living" characteristics to CANs, especially in opaque systems. Here, the use of carbazole-based thiuram disulfides (CTDs) that offer dual reactivity as photoactivated reshuffling linkages and iniferters under visible light irradiation is reported. The fast response to visible light activation of the CTDs leads to temporal control of shape manipulation, healing, and chain extension in the polymer networks, despite the lack of optical transparency. This strategy charts a promising avenue for manipulating multifunctional photoactivated CANs in a controlled manner.

15.
Dent Mater ; 40(5): 800-810, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38485599

RESUMO

OBJECTIVES: Heterogeneity and phase separation during network polymerization is a major issue contributing to the failure of dental adhesives. This study investigates how the ratio of hydrophobic crosslinkers to hydrophilic comonomer (C/H ratio), as well as cosolvent fraction (ethanol/water) influences the degree of heterogeneity and proclivity for phase separation in a series of model adhesive formulations. METHODS: Twelve formulations were investigated, with 4 different C/H ratios (7:1, 2.2:1, 1:1, 0.5:1) and 3 different overall cosolvent fractions (0, 10 and 20 wt%). The heterogeneity and phase behavior were characterized using Fourier Transform Infrared Spectroscopy (FT-IR), dynamic mechanical analysis (DMA), small-angle x-ray scattering (SAXS) and atomic force microscopy (AFM). RESULTS: In resins without cosolvent, all characterizations confirm reduced heterogeneity as C/H ratio decreases. However, when 10 or 20 wt% of cosolvent is included in the adhesive formulation, a higher degree of heterogeneity and even distinct phase separation with domains ranging from a few hundreds of nanometers to a few micrometers in size form. This is particularly noticeable at lower C/H ratios, which is surprising as HEMA is commonly considered a compatibilizer between hydrophobic crosslinkers and aqueous (co)solvents. SIGNIFICANCE: Our experiments demonstrate that formulations with lower C/H ratio and thus a lower viscosity experience later onsets of diffusion limitations during polymerization, which favors thermodynamically driven phase separation. Therefore, to determine or predict the resulting phase structure of adhesive materials, it is necessary to consider the kinetics and diffusion constraints during the formation of the polymer network and not just the compatibility of resin constituents.


Assuntos
Teste de Materiais , Microscopia de Força Atômica , Polimerização , Difusão , Espectroscopia de Infravermelho com Transformada de Fourier , Interações Hidrofóbicas e Hidrofílicas , Difração de Raios X , Espalhamento a Baixo Ângulo , Reagentes de Ligações Cruzadas/química , Cimentos Dentários/química , Solventes/química , Água/química
16.
Angew Chem Int Ed Engl ; 63(21): e202315200, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38546541

RESUMO

Dispersity (Ð or Mw/Mn) is an important parameter in material design and as such can significantly impact the properties of polymers. Here, polymer networks with independent control over the molecular weight and dispersity of the linear chains that form the material are developed. Using a RAFT polymerization approach, a library of polymers with dispersity ranging from 1.2-1.9 for backbone chain-length (DP) 100, and 1.4-3.1 for backbone chain-length 200 were developed and transformed to networks through post-polymerization crosslinking to form disulfide linkers. The tensile, swelling, and adhesive properties were explored, finding that both at DP 100 and DP 200 the swelling ratio, tensile strength, and extensibility were superior at intermediate dispersity (1.3-1.5 for DP 100 and 1.6-2.1 for DP 200) compared to materials with either substantially higher or lower dispersity. Furthermore, adhesive properties for materials with chains of intermediate dispersity at DP 200 revealed enhanced performance compared to the very low or high dispersity chains.

17.
ACS Appl Mater Interfaces ; 16(12): 15242-15250, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485216

RESUMO

A coordination complex, Eu(C12C12dbm)3(phen), with strong emission and a high quantum yield (QY ∼ 51.9%) was synthesized. The EuIII complex, as a fluorescent emitter, was embedded in cholesteric liquid crystal polymer networks (CLCNs). A series of free-standing EuIII-CLCN films were obtained, generating a typical sharp emission band corresponding to the EuIII complex. Tunable handedness of circularly polarized luminescence (CPL) with high |glum| values (up to 0.63) was observed. A series of CPL-active CLCN-coated PET films were also prepared (|glum| values up to 0.63), which can be used for large-area preparations. Moreover, by stacking an emitter-embedded PMMA layer and a CLCN layer, a composite system was built, and a large |glum| value (∼1.42) was achieved. Fluorescence patterns were prepared, and distinct images of CLCN films were recognized under both daylight and UV light. This work not only demonstrated that coordination compounds could be incorporated with CLCN films to prepare CPL-active materials with high |glum| values but also provided a new perspective for emissive CLCN materials used for anticounterfeiting and encryption.

18.
Gels ; 10(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38534621

RESUMO

Multicomponent interpenetrating polymer network (mIPN) hydrogels are promising tissue-engineering scaffolds that could closely resemble key characteristics of native tissues. The mechanical and biochemical properties of mIPNs can be finely controlled to mimic key features of target cellular microenvironments, regulating cell-matrix interactions. In this work, we fabricated hydrogels made of collagen type I (Col I), fibrin, hyaluronic acid (HA), and poly (ethylene glycol) diacrylate (PEGDA) using a network-by-network fabrication approach. With these mIPNs, we aimed to develop a biomaterial platform that supports the in vitro culture of human astrocytes and potentially serves to assess the effects of the abnormal deposition of fibrin in cortex tissue and simulate key aspects in the progression of neuroinflammation typically found in human pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), and tissue trauma. Our resulting hydrogels closely resembled the complex modulus of AD human brain cortex tissue (~7.35 kPa), promoting cell spreading while allowing for the modulation of fibrin and hyaluronic acid levels. The individual networks and their microarchitecture were evaluated using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Human astrocytes were encapsulated in mIPNs, and negligible cytotoxicity was observed 24 h after the cell encapsulation.

19.
J Colloid Interface Sci ; 664: 299-308, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479266

RESUMO

Flexible supercapacitors (FSCs) have attracted much attention due to their strong mechanical flexibility, wearability and portability, which greatly rely on the employed flexible electrodes. The conductive polymer hydrogels with excellent flexibility, processability and capacitive performance are one of the most promising candidates, which are still limited by their poor mechanical properties. Constructing robust interpenetrating polymer networks (IPN) is an effective approach to promote their mechanical properties. Herein, interpenetrating polyvinyl alcohol (PVA)-sodium alginate (SA)-polypyrrole (PPy) hydrogels are prepared by the freeze-thaw and in-situ polymerization method. The IPN structure composed of PVA and SA not only enhances the mechanical properties of hydrogels, but also provides substantial active sites for electrochemical reactions. Moreover, the hydrogen-bonding interaction between different components in the PVA-SA-PPy hydrogel boosts the charge/ion transfer. The optimal PVA-SA-PPy hydrogels show an elongation at break of 380 %, a tensile strength of 1.5 MPa, and a specific capacitance of 2646 mF cm-2 at 2 mA cm-2. The symmetric PVA-SA-PPy FSCs show an energy density of 96.7 µWh cm-2 at a power density of 999.9 µW cm-2, and the capacitance retention is 66.3 % after 10,000 cycles. These exceptional mechanical and electrochemical properties make the PVA-SA-PPy hydrogels a promising candidate for FSCs.

20.
Macromol Rapid Commun ; 45(10): e2400025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323367

RESUMO

Large scale computer simulations are employed to analyze the conformations of network strands in polymer networks at preparation conditions (characterized by a polymer volume fraction of ϕ0) and when swollen to equilibrium (characterized by a polymer volume fraction ϕ < ϕ0). Network strands in end-linked model networks are weakly stretched and partially swollen at preparation conditions as compared to linear polymers in the same solvent at ϕ0. Equilibrium swelling causes non-ideal chain conformations characterized by an effective scaling exponent approaching 7/10 on intermediate length scales for increasing overlap of the chains. The chain size in a network consists of a fluctuating and a time average "elastic" contribution. The elastic contribution swells essentially affinely ∝(ϕ0/ϕ)2/3, whereas the swelling of the fluctuating part lies between the expected swelling of the entanglement constraints and the swelling of non-cross-linked chains in a comparable semi-dilute solution. The total swelling of chain size results from the changes of both fluctuating and non-fluctuating contributions.


Assuntos
Polímeros , Polímeros/química , Simulação por Computador , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA