Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(34): 44967-44978, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39138954

RESUMO

Although vanadium-based compounds possess several advantageous characteristics, such as multivalency, open structure, and high theoretical specific capacity, which render them highly promising candidates for cathode materials in aqueous zinc ion batteries (AZIBs), their large-scale application still necessitates addressing the challenges posed by slow kinetics resulting from low conductivity and capacity degradation caused by material dissolution. Therefore, we have successfully synthesized high-purity mixed multivalent (NH4)8[VIV12VV7O41(OH)9]·11H2O (NVO) crystalline materials via a liquid-phase precipitation modulation method and employed it as an innovative AZIB cathode material for the first time. It exhibits a remarkable reversible specific capacity of 240 and 102.2 mAh g-1 after undergoing 1000 cycles at current densities of 1 and 5 A g-1, respectively, highlighting its exceptional cycling stability and electrochemical performance. The results from cyclic voltammetry (CV) and GITT tests demonstrate that the dominant factor influencing the charge storage is the pseudocapacitive behavior, which is accompanied by an exceptionally high diffusion coefficient of Zn2+ at a rate of 10-10 cm2 s-1. The highly reversible intercalation-deintercalation of Zn2+ in NVO/Zn cells is demonstrated through ex-situ TEM, XRD, and XPS analyses. This work provides a benchmark for the development of high-performance POV electrode materials.

2.
ACS Appl Mater Interfaces ; 16(34): 45511-45522, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39150706

RESUMO

In this work, a proton-conductive inorganic filler based on polyoxovanadate (NH4)7[MnV13O38] (AMV) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIM TFSI) was synthesized for hybridization with sulfonated poly(aryl ether ketone sulfone) (SPAEKS) to address the "trade-off" between high proton conductivity and mechanical strength. The novel inorganic filler AMV-EMIM TFSI (AI) was uniformly dispersed and stable within the polymer matrix due to the enhanced ionic interaction. AI provided additional proton transport sites, leading to an elevated ion exchange capacity (IEC) and improved proton conductivity, even at low swelling ratios. The optimized SPAEKS-50/AI-5 (50 for degree of sulfonation of SPAEKS and 5 for weight percentage of AI filler) membrane exhibited the highest proton conductivity of 0.188 S·cm-1 at 80 °C with an IEC of 2.38 mmol·g-1. The enhancement of intermolecular forces improved the mechanical strength from 35 to 55 MPa and improved the elongation at break from 17 to 45%, indicating excellent mechanical properties. The hybrid membrane also demonstrated reinforced methanol resistance due to the hydrogen bonding network and blocking effect, making it suitable for direct methanol fuel cell (DMFC) applications, which exhibited a power density of 15.1 mW·cm-2 at 80 °C. The possibility of further functionalizing these hybrid membranes to tailor their properties for specific applications presents exciting new avenues for research and development. By modification of the type and distribution of fillers or incorporation of additional functional groups, the membranes could be customized to meet the unique demands of various energy storage and conversion systems, enhancing their performance and broadening their application scope. This work provides new insights into the design of polymer electrolyte membranes through inorganic filler hybridization.

3.
Angew Chem Int Ed Engl ; 63(11): e202320036, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38191990

RESUMO

The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).

4.
Nano Lett ; 23(22): 10221-10227, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37935022

RESUMO

A limitation of the implementation of cadmium chalcogenide quantum dots (QDs) in charge transfer systems is the efficient removal of photogenerated holes. Rapid hole transfer has typically required the ex situ functionalization of hole acceptors with groups that can coordinate to the surface of the QD. In addition to being synthetically limiting, this strategy also necessitates a competitive binding equilibrium between the hole acceptor and native, solubilizing ligands on the nanocrystal. Here we show that the incorporation of oxygen vacancies into polyoxovanadate-alkoxide clusters improves hole transfer kinetics by promoting surface interactions between the metal oxide assembly and the QD. Investigating the reactivity of oxygen-deficient clusters with phosphonate-capped QDs reveals reversible complexation of the POV-alkoxide with a phosphonate ligand at the nanocrystal surface. These findings reveal a new method of facilitating QD-hole acceptor association that bypasses the restrictions of exchange interactions.

5.
ChemSusChem ; 16(24): e202300631, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37614201

RESUMO

Decavanadate ([V10 O28 ]6- , {V10 }) clusters are a potential electrode material for lithium and post-lithium batteries; however, their low stability due to the solubility in liquid organic electrolytes has been challenging. These molecular clusters are also prone to transform into solid-state oxides at a moderate temperature needed in the typical electrode fabrication process. Hence, controlling the solubility and improving the thermal stability of compounds are essential to make them more viable options for use as battery electrodes. This study shows a crystal engineering approach to stabilize the cluster with organic guanidinium (Gdm+ ) cation through the hydrogen-bonding interactions between the amino groups of the cation and the anion. The comparison of solubility and thermal stability of the Gdm{V10 } with another cluster bearing tetrabutylammonium (Tba+ ) cation reveals the better stability of cation-anion assembly in the former than the latter. As a result, the Gdm{V10 } delivers better rate capability and cycling stability than Tba{V10 } when tested as anode material in a half-cell configuration of a sodium-ion battery. Finally, the performance of the Gdm{V10 } anode is also investigated in a lithium-ion battery full cell with LiFePO4 cathode.

6.
Chemistry ; 29(59): e202301389, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37498734

RESUMO

Organofunctionalized tetranuclear clusters [(MII Cl)2 (VIV O)2 {((HOCH2 CH2 )(H)N(CH2 CH2 O))(HN(CH2 CH2 O)2 )}2 ] (1, M=Co, 2: M=Zn) containing an unprecedented oxometallacyclic {M2 V2 Cl2 N4 O8 } (M=Co, Zn) framework have been prepared by solvothermal reactions. The new oxo-alkoxide compounds were fully characterized by spectroscopic methods, magnetic susceptibility measurement, DFT and ab initio computational methods, and complete single-crystal X-ray diffraction structure analysis. The isostructural clusters are formed of edge-sharing octahedral {VO5 N} and trigonal bipyramidal {MO3 NCl} units. Diethanolamine ligates the bimetallic lacunary double cubane core of 1 and 2 in an unusual two-mode fashion, unobserved previously. In the crystalline state, the clusters of 1 and 2 are joined by hydrogen bonds to form a three-dimensional network structure. Magnetic susceptibility data indicate weakly antiferromagnetic interactions between the vanadium centers [Jiso (VIV -VIV )=-5.4(1); -3.9(2) cm-1 ], and inequivalent antiferromagnetic interactions between the cobalt and vanadium centers [Jiso (VIV -CoII )=-12.6 and -7.5 cm-1 ] contained in 1.

7.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478491

RESUMO

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

8.
Materials (Basel) ; 13(19)2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023171

RESUMO

The paper presents a computational study of the magnetocaloric properties of the V12 polyoxovanadate molecular magnet. The description is restricted to low-temperature range (below approximately 100 K), where the magnetic properties of the system in question can be sufficiently modelled by considering a tetramer that consists of four vanadium ions with spins S=1/2. The discussion is focused on the magnetocaloric effect in the cryogenic range. The exact and numerical diagonalization of the corresponding Hamiltonian is used in order to construct the thermodynamic description within a version of the canonical ensemble. The thermodynamic quantities of interest, such as magnetic entropy, specific heat, entropy change under isothermal magnetization/demagnetization, temperature change under adiabatic magnetization/demagnetization, refrigerant capacity, and magnetic Grüneisen ratio, are calculated and discussed extensively. The importance of two quantum level crossings for the described properties is emphasized. The significant ranges of direct and inverse magnetocaloric effect are predicted. In particular, the maximized inverse magnetocaloric response is found for cryogenic temperatures.

9.
Angew Chem Int Ed Engl ; 58(14): 4649-4653, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30734443

RESUMO

Design and synthesis of metal-organic polyhedra (MOPs) with targeted geometries from predetermined secondary building units (SBUs) is a long-standing challenge in chemistry and material science. Theoretical prediction shows that there are 6 possible polyhedra from the 3-coordinated, 4-coordinated octahedron ((3,4)-c octahedron) to (3,5)-c icosahedron with minimal transitivity (simplest possible). Except for one missing polyhedron (mtr) due to the unfavorable angles, we report five MOPs based on these structures, including an octahedral (3,4)-c VMOP-21 (rdo), an icosahedral (3,5)-c VMOP-25 (trc), and three intermediate derived trinodal (3,4,5)-c VMOP-22-24 (ghm, hmg, xum). Remarkably, all these MOPs obey the minimal transitivity principle and are consistent with geometrical predictions.

10.
Adv Mater ; 30(46): e1804033, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30285284

RESUMO

Single-source precursors are used to produce nanostructured BiVO4 photoanodes for water oxidation in a straightforward and scalable drop-casting synthetic process. Polyoxometallate precursors, which contain both Bi and V, are produced in a one-step reaction from commercially available starting materials. Simple annealing of the molecular precursor produces nanocrystalline BiVO4 films. The precursor can be designed to incorporate a third metal (Co, Ni, Cu, or Zn), enabling the direct formation of doped BiVO4 films. In particular, the Co- and Zn-doped photoanodes show promise for photoelectrochemical water oxidation, with photocurrent densities >1 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE). Using this simple synthetic process, a 300 cm2 Co-BiVO4 photoanode is produced, which generates a photocurrent of up to 67 mA at 1.23 V vs RHE and demonstrates the scalability of this approach.

11.
Molecules ; 23(5)2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747400

RESUMO

The rise in the number of fungal infections is requiring the rapid development of novel antifungal agents. A new polyoxovanadate functionalized by Zn-fluconazole coordination complexes, Zn3(FLC)6V10O28·10H2O (ZnFLC) (FLC = fluconazole) has been synthesized and evaluated for in vitro antifungal against Candida species. The identity of ZnFLC were confirmed by elemental analysis, IR spectrum, and single-crystal X-ray diffraction. The antifungal activities of ZnFLC was screened in 19 Candida species strains using the microdilution checkerboard technique. The minimum inhibitory concentration (MIC80) value of ZnFLC is 4 µg/mL on the azole-resistant clinical isolates of C. albicans HL973, which is lower than the positive control, FLC. The mechanism of ZnFLC against C. albicans HL973 showed that ZnFLC damaged the fungal cell membrane and reduced the ergosterol content. The expression of ERG1, ERG7, ERG11 ERG27, and ERG28, which have effects on the synthesis of ergosterol, were all significantly upregulated by ZnFLC.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Fluconazol/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Vanadatos/farmacologia , Zinco/química , Antifúngicos/química , Vias Biossintéticas/genética , Candida/genética , Candida/crescimento & desenvolvimento , Candida/isolamento & purificação , Complexos de Coordenação/química , Ergosterol/análise , Ergosterol/biossíntese , Fluconazol/química , Genes Fúngicos , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Vanadatos/química
12.
Chemistry ; 24(19): 4952-4956, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29438588

RESUMO

Aerobic catalytic oxidations are promising routes to replace environmentally harmful oxidants with O2 in organic syntheses. Here, we report a molecular barium vanadium oxide, [Ba4 (dmso)14 V14 O38 (NO3 )] (={Ba4 V14 }) as viable homogeneous catalyst for a series of oxidation reactions in N,N-dimethyl formamide solution under oxygen (8 bar). Starting from the model compound 9,10-dihydroanthracene, we report initial dehydrogenation/ aromatization leading to anthracene formation; this intermediate is subsequently oxidized by stepwise oxygen transfer, first giving the mono-oxygenated anthrone and then the di-oxygenated target product, anthraquinone. Comparative reaction analyses using the Neumann catalyst [PV2 Mo10 O40 ]5- as reference show that oxygen diffusion into the reaction mixture is the rate-limiting step, resulting in accumulation of the reduced catalyst species. This allows us to propose improved reactor designs to overcome this fundamental challenge for aerobic oxidation catalysis.

13.
J Inorg Biochem ; 147: 221-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25771147

RESUMO

The speciation studies of oxovanadates are essential to clarify their biological activities. We surveyed the distribution of oxovanadate species in the presence of halide anions with various acid concentrations in an aqueous mixed-solvent system. The presence of chloride, bromide, and iodide anions has no effects on the appearance of polyoxovanadate species observed in (51)V NMR. Those are the precedent formation of metavanadate species and decavanadates. The presence of fluoride anion during the addition of acids exhibits strong intervention in the polyoxovanadate equilibria and we found the subsequent formation of two polyoxovanadate species by (51)V NMR observation. From the estimated experimental condition, we isolated fluoride-incorporated polyoxovanadates {Et4N}4[V7O19F] and {Et4N}4[HV11O29F2], successfully. Polyanion [V7O19F](4-) is the fluoride-incorporated all V(V) state polyoxovanadate which has two different coordination environments of tetrahedral and square pyramidal vanadium units within the one anionic structural integrity. The structural gap between tetrahedral-unit-based metavanadate and octahedral-unit-based decavanadate structures may be linked by this hybrid complex.


Assuntos
Complexos de Coordenação/síntese química , Fluoretos/química , Vanadatos/química , Complexos de Coordenação/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA