Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.071
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998147

RESUMO

The existence of fissures poses a serious threat to the safe production of underground mines, and this paper investigates a polymer grouting material for filling fissures in underground mines. To optimise the ratio of polymer grouting materials, this paper designed 16 test groups using the orthogonal test method to find the most reasonable slurry ratio. In order to study the gel diffusion process of polymer slurry in the fissure and to explore the changes of various parameters of the slurry after injection, simulated grouting tests were carried out, and the distribution laws of viscosity, pressure, and diffusion distance of the slurry were discussed. The findings indicate that when the proportion of ethylenediamine polypropylene oxide tetrol: glycerol polyether: catalyst: foam stabiliser is 10:8:0.5:0.4, the polymer grouting material has excellent compressive strength, and the maximum compressive strength can reach 12.31 MPa. Prior to reaching the gel time point, the viscosity of the polymer slurry was nearly constant, which is basically maintained at 0.772 Pa·s under normal temperature and pressure, but after reaching the gel time point, it abruptly rose. As the slurry mass increased, so did the penetration distance and pressure; in the simulated grouting test, when the slurry mass was 400 g, the maximum diffusion distance of the slurry reached 39 cm. Conversely, as the fracture pore size increased, the diffusion distance and pressure of the slurry decreased. Along the diffusion path, the slurry pressure progressively drops, but this change is not synchronised with the diffusion distance's change. This work can serve as a reference for the configuration of polymer slurry and aid in comprehending the diffusion law of the slurry within the fissure.

2.
J Biomed Mater Res B Appl Biomater ; 112(7): e35436, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961592

RESUMO

Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices. In this study, we characterized the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa on smooth and submicron-textured polyurethane surfaces after 1, 2, 3, and 7 days, and measured the efficacy of common antibiotics against these biofilms. Results show that the submicron-textured surfaces significantly reduced biofilm formation and growth, and that the efficacy of antibiotics against biofilms grown on textured surfaces was improved compared with smooth surfaces. The antibiotic efficacy appears to be related to the degree of biofilm development. At early time points in biofilm formation, antibiotic treatment reveals reasonably good antibiotic efficacy against biofilms on both smooth and textured surfaces, but as biofilms mature, the efficacy of antibiotics drops dramatically on smooth surfaces, with lesser decreases seen for the textured surfaces. The results demonstrate that surface texturing with submicron patterns is able to improve the use of standard antibiotic therapy to treat device-centered biofilms by slowing the development of the biofilm, thereby offering less resistance to antibiotic delivery to the bacteria within the biofilm community.


Assuntos
Antibacterianos , Biofilmes , Pseudomonas aeruginosa , Staphylococcus aureus , Propriedades de Superfície , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Poliuretanos/química , Poliuretanos/farmacologia
3.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000407

RESUMO

This work focused on the preparation and investigation of polyurethane (SO-PU)-containing sunflower oil glycerides. By transesterification of sunflower oil with glycerol, we synthesized a glyceride mixture with an equilibrium composition, which was used as a new diol component in polyurethanes in addition to poly(ε-caprolactone)diol (PCLD2000). The structure of the glyceride mixture was characterized by physicochemical methods, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), nuclear magnetic resonance spectroscopy (NMR), and size exclusion chromatography (SEC) measurements. The synthesis of polyurethanes was performed in two steps: first the prepolymer with the isocyanate end was synthesized, followed by crosslinking with an additional amount of diisocyanate. For the synthesis of the prepolymer, 4,4'-methylene diphenyl diisocyanate (MDI) or 1,6-hexamethylene diisocyanate (HDI) were used as isocyanate components, while the crosslinking was carried out using an additional amount of MDI or HDI. The obtained SO-PU flexible polymer films were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The so-obtained flexible SO-PU films were proved to be suitable for the preparation of potentially biocompatible and/or biodegradable scaffolds. In addition, the stress versus strain curves for the SO-PU polymers were interpreted in terms of a mechanical model, taking into account the yield and the strain hardening.


Assuntos
Polímeros , Poliuretanos , Óleo de Girassol , Poliuretanos/química , Polímeros/química , Óleo de Girassol/química , Materiais Biocompatíveis/química , Isocianatos/química , Poliésteres/química , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Adv Mater ; : e2406574, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948960

RESUMO

Interconnecting macromolecules via multiple hydrogen bonds (H-bonds) can simultaneously strengthen and toughen polymers, but material synthesis becomes extremely difficult with increasing number of H-bonding donors and acceptors; therefore, most reports are limited to triple and quadruple H-bonds. Herein, this bottleneck is overcome by adopting a quartet-wise approach of constructing H-bonds instead of the traditional pairwise method. Thus, large multiple hydrogen bonds can be easily established, and the supramolecular interactions are further reinforced. Especially, when such multiple H-bond motifs are embedded in polymers, four macromolecular chains-rather than two as usual-are tied, distributing the applied stress over a larger volume and more significantly improving the overall mechanical properties. Proof-of-concept studies indicate that the proposed intermolecular multiple H-bonds (up to duodecuple) are readily introduced in polyurethane. A record-high tensile strength (105.2 MPa) is achieved alongside outstanding toughness (352.1 MJ m-3), fracture energy (480.7 kJ m-2), and fatigue threshold (2978.4 J m-2). Meantime, the polyurethane has acquired excellent self-healability and recyclability. This strategy is also applicable to nonpolar polymers, such as polydimethylsiloxane, whose strength (15.3 MPa) and toughness (50.3 MJ m-3) are among the highest reported to date for silicones. This new technique has good expandability and can be used to develop even more and stronger polymers.

5.
Adv Healthc Mater ; : e2400462, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38948966

RESUMO

Osteochondral regeneration remains formidable challenges despite significant advances in microsurgery. Herein, an acellular trilayer cryogel (TC) with injectability, tunable pore sizes (80-200 µm), and appropriate compressive modulus (10.8 kPa) is manufactured from self-healable hydrogel under different gelling times through Schiff reaction between chitosan and difunctionalized polyurethane (DFPU). Bioactive molecules (Y27632 and dexamethasone) are respectively loaded in the top and bottom layers to form the Y27632/dexamethasone-loaded trilayer cryogel (Y/DEX-TC). Mesenchymal stem cells (MSCs) seeded in Y/DEX-TC proliferated ≈350% in vitro and underwent chondrogenesis or osteogenesis in response to the respective release of Y or DEX in 14 days. Acupuncture is administered to animals in an attempt to modulate the innate regulatory system and mobilize endogenous MSCs for osteochondral defect regeneration. In vivo rabbit experiments using Y/DEX-TC combined with acupuncture successfully regulate SDF-1 and TGF-ß1 levels, which possibly cause MSC migration toward Y/DEX-TC. The synergistic effect of cryogel and acupuncture on immunomodulation is verified with a ≈7.3-fold enhancement of the M2-/M1-macrophage population ratio by treatment of Y/DEX-TC combining acupuncture, significantly greater than ≈1.5-fold increase by acupuncture or ≈2.2-fold increase by Y/DEX-TC alone. This novel strategy using acellular drug-loaded cryogel and accessible acupuncture shows promise in treating osteochondral defects of joint damage.

6.
Polymers (Basel) ; 16(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-39000629

RESUMO

Based on organophosphorus branched polyols (AEPAs) synthesized using triethanolamine (TEOA), ortho-phosphoric acid (OPA), and polyoxyethylene glycol with MW = 400 (PEG), vapor-permeable polyurethane ionomers (AEPA-PEG-PUs) were obtained. During the synthesis of AEPAs, the reaction of the OPA etherification with polyoxyethylene glycol was studied in a wide temperature range and at different molar ratios of the starting components. It turned out that OPA simultaneously undergoes a catalytically activated etherification reaction with triethanolamine and PEG. After TEOA is fully involved in the etherification reaction, excess OPA does not react with the terminal hydroxyl groups of AEPA-PEG or the remaining amount of PEG. The ortho-phosphoric acid remaining in an unreacted state is involved in associative interactions with the phosphate ions of the AEPA. Increasing the synthesis temperature from 40 °C to 110 °C leads to an increase in OPA conversion. However, for the AEPA-PEG-PU based on AEPA-PEG obtained at 100 °C and 110 °C, ortho-phosphoric acid no longer enters into associative interactions with the phosphate ions of the AEPA. Due to the hydrophilicity of polyoxyethylene glycol, the presence of phosphate ions in the polyurethane structure, and their associative binding with the unreacted ortho-phosphoric acid, the diffusion of water molecules in polyurethanes is enhanced, and high values of vapor permeability and tensile strength were achieved.

7.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000664

RESUMO

Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.

8.
Polymers (Basel) ; 16(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000667

RESUMO

The benefit of being acquainted with thermal properties, especially the thermal stability of polyurethanes (PU), and simplified methods for their improvement is manifold. Considering this, the effect of embedding different amounts of unmodified and surface-modified TiO2 nanoparticles (NPs) within PU, based on polycaprolactone (PCL) and Boltorn® aliphatic hyperbranched polyester, on PU properties was investigated. Results obtained via scanning electron microscopy, swelling measurements, mechanical tests and thermogravimetric analysis revealed that TiO2 NPs can be primarily applied to improve the thermal performance of PU. Through surface modification of TiO2 NPs with an amphiphilic gallic acid ester containing a C12 long alkyl chain (lauryl gallate), the impact on thermal stability of PU was greater due to the better dispersion of modified TiO2 NPs in the PU matrix compared to the unmodified ones. Also, the distinct shape of DTG peaks of the composite prepared using modified TiO2 NPs indicates that applied nano-filler is mostly embedded in soft segments of PU, leading to the delay in thermal degradation of PCL, simultaneously improving the overall thermal stability of PU. In order to further explore the thermal degradation process of the prepared composites and prove the dominant role of incorporated TiO2 NPs in the course of thermal stability of PU, various iso-conversional model-free methods were applied. The evaluated apparent activation energy of the thermal degradation reaction at different conversions clearly confirmed the positive impact of TiO2 NPs on the thermal stability and aging resistance of PU.

9.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000744

RESUMO

Polyurethane (PU) is among the most universal polymers and has been extensively applied in many fields, such as construction, machinery, furniture, clothing, textile, packaging and biomedicine. Traditionally, as the main starting materials for PU, polyols deeply depend on petroleum stock. From the perspective of recycling and environmental friendliness, advanced PU synthesis, using diversified resources as feedstocks, aims to develop versatile products with excellent properties to achieve the transformation from a fossil fuel-driven energy economy to renewable and sustainable ones. This review focuses on the recent development in the synthesis and modification of PU by extracting value-added monomers for polyols from waste polymers and natural bio-based polymers, such as the recycled waste polymers: polyethylene terephthalate (PET), PU and polycarbonate (PC); the biomaterials: vegetable oil, lignin, cashew nut shell liquid and plant straw; and biomacromolecules: polysaccharides and protein. To design these advanced polyurethane formulations, it is essential to understand the structure-property relationships of PU from recycling polyols. In a word, this bottom-up path provides a material recycling approach to PU design for printing and packaging, as well as biomedical, building and wearable electronics applications.

10.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000783

RESUMO

In response to the environmental impacts of conventional polyurethane adhesives derived from fossil fuels, this study introduces a sustainable alternative utilizing lignin-based polyols extracted from rice straw through a process developed at INESCOP. This research explores the partial substitution of traditional polyols with lignin-based equivalents in the synthesis of reactive hot melt polyurethane adhesives (HMPUR) for the footwear industry. The performance of these eco-friendly adhesives was rigorously assessed through Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), rheological analysis, and T-peel tests to ensure their compliance with relevant industry standards. Preliminary results demonstrate that lignin-based polyols can effectively replace a significant portion of fossil-derived polyols, maintaining essential adhesive properties and marking a significant step towards more sustainable adhesive solutions. This study not only highlights the potential of lignin in the realm of sustainable adhesive production but also emphasises the valorisation of agricultural by-products, thus aligning with the principles of green chemistry and sustainability objectives in the polymer industry.

11.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000785

RESUMO

Thermoresponsive shape memory polymers (SMPs) have garnered increasing interest for their exceptional ability to retain a temporary shape and recover the original configuration through temperature changes, making them promising in various applications. The SMP shape change and recovery that happen due to a combination of mechanical loading and appropriate temperatures are related to its particular microstructure. The deformation process leads to the formation and growth of micro-cracks in the SMP structure, whereas the subsequent heating over its glass transition temperature Tg leads to the recovery of its original shape and properties. These processes also affect the SMP microstructure. In addition to the observed macroscopic shape recovery, the healing of micro-crazes and micro-cracks that have nucleated and developed during the loading occurs. Therefore, our study delves into the microscopic aspect, specifically addressing the healing of micro-cracks in the cyclic loading process. The proposed research concerns a thermoplastic polyurethane shape memory polymer (PU-SMP) MM4520 with a Tg of 45 °C. The objective of the study is to investigate the effect of the number of tensile loading-unloading cycles and thermal shape recovery on the evolution of the PU-SMP microstructure. To this end, comprehensive research starting from structural characterization of the initial state and at various stages of the PU-SMP mechanical loading was conducted. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and scanning electron microscopy (SEM) were used. Moreover, the shape memory behavior in the thermomechanical loading program was investigated. The obtained average shape fixity value was 99%, while the shape recovery was 92%, which confirmed good shape memory properties of the PU-SMP. Our findings reveal that even during a single loading-unloading tension cycle, crazes and cracks nucleate on the surface of the PU-SMP specimen, whereas the subsequent temperature-induced shape recovery process carried out at the temperature above Tg enables the healing of micro-cracks. Interestingly, the surface of the specimen after three and five loading-unloading cycles did not exhibit crazes and cracks, although some traces of cracks were visible. The traces disappeared after exposing the material to heating at Tg + 20 °C (65 °C) for 30 min. The crack closure phenomenon during deformation, even without heating over Tg, occurred within three and five subsequent cycles of loading-unloading. Notably, in the case of eight loading-unloading cycles, cracks appeared on the surface of the PU-SMP and were healed only after thermal recovery at the particular temperature over Tg. Upon reaching a critical number of cycles, the proper amount of energy required for crack propagation was attained, resulting in wide-open cracks on the material's surface. It is worth noting that WAXS analysis did not indicate strong signs of typical highly ordered structures in the PU-SMP specimens in their initial state and after the loading history; however, some orientation after the cyclic deformation was observed.

12.
Polymers (Basel) ; 16(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000796

RESUMO

Thermo-responsive, biocompatible polyurethane (PU) with shape memory properties is highly desirable for biomedical applications. An innovative approach to producing wound closure strips using shape memory polymers (SMPs) is of significant interest. In this work, PU composed of polycaprolactone (PCL) and 1,4-butanediol (BDO) was synthesized using two-step polymerization. Palm oil (PO) was added to PU for enhancing the Young's modulus of the PU beyond the set criterion of 130 MPa. It was found that PU had the ability to crystallize at room temperature and the segments of individual PCL and BDO polyurethanes crystallized separately. The crystalline domains and hard segment of PU greatly affected the tensile properties. The reduction of crystalline domains by the addition of PO and deformation at the higher melting temperature of the crystalline PCL polyurethane phase improved the shape fixity and shape recovery ratios. The new irreversible phase, raised from the permanent deformation upon stretching at the between melting temperature of the crystalline PCL and BDO polyurethanes of 70 °C, resulted in a decrease in shape fixity ratio after the first thermomechanical stretching-recovering cycles. The demonstration of PU as a wound closure strip showed its efficiency and potential until the surgical wound healed.

13.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998443

RESUMO

Increased usage of selective laser sintering (SLS) for the production of end-use functional components has generated a requirement of developing new materials and process improvements to improve the applicability of this technique. This article discusses a novel process wherein carbon black was applied to the surface of TPU powder to reduce the laser reflectivity during the SLS process. The printing was carried out with a preheating temperature of 75 °C, laser energy density of 0.028 J/mm2, incorporating a 0.4 wt % addition of carbon black to the TPU powder, and controlling the powder layer thickness at 125 µm. The mixed powder, after printing, shows a reflectivity of 13.81%, accompanied by the highest average density of 1.09 g/cm3, hardness of 78 A, tensile strength of 7.9 MPa, and elongation at break was 364.9%. Compared to commercial TPU powder, which lacks the carbon black coating, the reflectance decreased by 1.78%, mechanical properties improved by 33.9%, and there was a notable reduction in the porosity of the sintered product.

14.
Materials (Basel) ; 17(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998448

RESUMO

Waterborne polyurethane asphalt emulsion (WPUA) is an environmentally friendly bituminous material, whose performance is highly dependent on the phase structure of the continuous phase. In this paper, WPUAs in the vicinity of phase inversion were prepared using waterborne polyurethane (WPU) and asphalt emulsion. The chemical structures, thermal stability, dynamic mechanical properties, phase-separated morphology and mechanical performance of WPUAs were studied. Fourier-transform infrared (FTIR) spectra revealed that there are no -NCO bonds in either the pure WPU or WPUAs. Moreover, the preparation of WPUA is a physical process. The addition of WPU weakens the thermal stability of asphalt emulsion. WPU improves the storage modulus of asphalt emulsion at lower and higher temperatures. The glass transition temperatures of the WPUA films are higher than that of the pure WPU film. When the WPU concentration increases from 30 wt% to 40 wt%, phase inversion occurs; that is, the continuous phase shifts from asphalt to WPU. The WPUA films have lower tensile strength and toughness than the pure WPU film. However, the elongations at break of the WPUA films are higher than that of the pure WPU film. Both the tensile strength and toughness of the WPUA films increase with the WPU concentration. Due to the occurrence of phase inversion, the elongation at break, tensile strength and toughness of the WPUA film containing 30 wt% WPU are increased by 29%, 250% and 369%, respectively, compared to the film with 40 wt% WPU.

15.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999060

RESUMO

Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C2Tx nanosheets on the surface of ammonium polyphosphate (APP), forming a double-layer-encapsulated structure of ammonium polyphosphate (APP@PEI@Ti3C2Tx). Subsequently, flame-retardant thermoplastic polyurethane (TPU) composites were fabricated by melting the flame-retardant agent with TPU. Afterwards, by using air-assisted thermocompression technology, we combined a reduced graphene oxide (rGO) film with flame-retardant TPU composites to fabricate hierarchical TPU/APP@PEI@Ti3C2Tx/rGO composites. We systematically studied the combustion behavior, flame retardancy, and smoke-suppression performance of these composite materials, as well as the flame-retardant mechanism of the expansion system. The results indicated a significant improvement in the interface interaction between APP@PEI@Ti3C2Tx and the TPU matrix. Compared to pure TPU, the TPU/10APP@PEI@1TC composite exhibited reductions of 84.1%, 43.2%, 62.4%, and 85.2% in peak heat release rate, total heat release, total smoke release, and total carbon dioxide yield, respectively. The averaged EMI SE of hierarchical TPU/5APP@PEI@1TC/rGO also reached 15.53 dB in the X-band.

16.
Biofabrication ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968935

RESUMO

Three-dimensional (3D) printing is an emerging tool for creating patient-specific tissue constructs analogous to the native tissue microarchitecture. In this study, anatomically equivalent 3D nerve conduits were developed using thermoplastic polyurethane (TPU) by combining reverse engineering and material extrusion (i.e., fused deposition modeling) technique. Printing parameters were optimized to fabricate nerve-equivalent TPU constructs. The TPU constructs printed with different infill densities supported the adhesion, proliferation, and gene expression of neuronal cells. Subcutaneous implantation of the TPU constructs for three months in rats showed neovascularization with negligible local tissue inflammatory reactions and was classified as a non-irritant biomaterial as per ISO 10993-6. To perform in vivo efficacy studies, nerve conduits equivalent to rat's sciatic nerve were fabricated and bridged in a 10 mm sciatic nerve transection model. After four months of implantation, the sensorimotor function and histological assessments revealed that the 3D printed TPU conduits promoted the regeneration in critical-sized peripheral nerve defects equivalent to autografts. This study proved that TPU-based 3D printed nerve guidance conduits can be created to replicate the complicated features of natural nerves that can promote the regeneration of peripheral nerve defects and also show the potential to be extended to several other tissues for regenerative medicine applications. .

17.
Macromol Rapid Commun ; : e2400284, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38967216

RESUMO

Due to the advantages of low energy consumption, no air and water pollutions, the reactive polyurethane films (RPUFs) are replacing the solvated and waterborne PUFs nowadays, which significantly promotes the green and low-carbon production of PU films. However, the microstructure evolution and in situ film-formation mechanism of RPUFs in solvent-free media are still unclear. Herein, according to time-temperature equivalence principle, the in situ polyaddition and film-formation processes of RPUFs generated by the typical polyaddition of diisocyanate terminated prepolymer (component B) and polyether glycol (component A) are thoroughly investigated at 25 °C. According to the temporal change of viscosity, the RPUFs gradually transfer from liquid to gel and finally to solid state. Further characterizing the molecular weight, hydrogen bonds, crystallinity, gel content, and phase images, the polyaddition and film-formation processes can be divided into three stages as 1) chain extension and microcrystallization; 2) gelation and demicrocrystallization; 3) microphase separation and film-formation. This work promotes the understanding of the microstructure evolution and film-formation mechanism of RPUFs, which can be used as the theoretical guidance for the controllable preparation of high-performance products based on RPUFs.

18.
Sci Rep ; 14(1): 15156, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956292

RESUMO

The 2,4-toluenediamine (TDA) is one of the most important chemicals in the polyurethane industry, produced by the catalytic hydrogenation of 2,4-dinitrotoluene (DNT). The development of novel catalysts that can be easily recovered from the reaction mixture is of paramount importance. In our work, a NiFe2O4/N-BCNT supported magnetic catalyst was prepared by a modified coprecipitation method. The catalyst support alone also showed activity in the synthesis of TDA. Platinum nanoparticles were deposited on the catalyst support surface by a fast, relatively simple, and efficient sonochemical method, resulting in a readily applicable catalytically active system. The prepared catalyst exhibited high activity in hydrogenation tests, which was proved by the exceptionally high DNT conversion (100% for 120 min at 333 K) and TDA yield (99%). Furthermore, the magnetic catalyst can be easily recovered from the reaction medium by the action of an external magnetic field, which can greatly reduce catalyst loss during separation.

19.
J Hazard Mater ; 476: 135089, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959827

RESUMO

The surge in face mask use due to COVID-19 has raised concerns about micro(nano)plastics (MNPs) from masks. Herein, focusing on fabric structure and polymer composition, we investigated MNP generation characteristics, mechanisms, and potential risks of surgical polypropylene (PP) and fashionable polyurethane (PU) masks during their wearing and photoaging based on stereomicroscope, µ-Fourier transform infrared spectroscopy (µ-FTIR), and scanning electron microscope (SEM) techniques. Compared with new PP and PU masks (66 ± 16 MPs/PP-mask, 163 ± 83 MPs/PU-mask), single- and multiple-used masks exhibited remarkably increased MP type and abundance (600-1867 MPs/PP-mask, 607-2167 MPs/PU-mask). Disinfection exacerbated endogenous MP generation in masks, with washing (416 MPs/PP-mask, 30,708 MPs/PU-mask) being the most prominent compared to autoclaving (219 MPs/PP-mask, 553 MPs/PU-mask) and alcohol spray (162 MPs/PP-mask, 18,333 MPs/PU-mask). Photoaging led to massive generation of MPs (8.8 × 104-3.7 × 105 MPs/PP-layer, 1.0 × 105 MPs/PU-layer) and NPs (5.2 × 109-3.6 × 1013 NPs/PP-layer, 3.5 × 1012 NPs/PU-layer) from masks, presenting highly fabric structure-dependent aging modes as "fragmentation" for fine fiber-structure PP mask and "erosion" for 3D mesh-structure PU mask. The MNPs derived from PP/PU mask caused significant deformities of Zebrafish (Danio rerio) larvae. These findings underscore the potential adverse effects of masks on humans and aquatic organisms, advocating to enhance proper use and rational disposal for masks.

20.
Contact Dermatitis ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956835

RESUMO

BACKGROUND: Isocyanates are used as starting materials of polyurethane (PU) products. They are relatively important occupational skin sensitizers. OBJECTIVES: To analyse results of a large isocyanate patch test series of 19 isocyanate test substances and 4,4'-diaminodiphenylmethane (MDA), a marker of 4,4'-diphenylmethane diisocyanate (MDI) hypersensitivity. METHODS: Test files were screened for positive reactions in the isocyanate series. Patients with positive reactions were analysed for occupation, exposure and diagnosis. RESULTS: In 2010-2019, 53 patients had positive reactions in the series (16% of 338 patients tested). MDA, the well-established screening substance for MDI allergy, was positive in 30 patients, an in-house monomeric MDI test substance in 23 patients and 3 different polymeric MDI test substances in 19-21 patients. We diagnosed 16 cases of occupational allergic contact dermatitis (OACD) from MDI including 3 pipe reliners. Hexamethylene-1,6-diisocyanate (HDI) oligomers in paint hardeners caused 5 cases of OACD, more cases than 2,4-toluene diisocyanate (TDI; n = 3) and isophorone diisocyanate (IPDI; n = 1) put together. CONCLUSIONS: In contrast to previous studies, polymeric MDI test substances were not superior to a monomeric MDI. Pipe reliners may get sensitised not only by epoxy products and acrylates but also by MDI in hardeners of PU pipe coatings. HDI oligomers were the second most important causes of OACD after MDI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA