Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Genes (Basel) ; 14(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37510229

RESUMO

DNA methyltransferase 1 (DNMT1), the first-identified DNA methyltransferase in mammals, has been well studied in the control of embryo development and somatic homeostasis in mice and humans. Accumulating reports have demonstrated that DNMT1 plays an important role in the regulation of differentiation and the activation of immune cells. However, little is known about the effects of porcine DNMT1 on such functional regulation, especially the regulation of the biological functions of immune cells. In this study, we report the cloning of DNMT1 (4833 bp in length) from porcine alveolar macrophages (PAMs). According to the sequence of the cloned DNMT1 gene, the deduced protein sequence contains a total of 1611 amino acids with a 2 amino acid insertion, a 1 amino acid deletion, and 12 single amino acid mutations in comparison to the reported DNMT1 protein. A polyclonal antibody based on a synthetic peptide was generated to study the expression of the porcine DNMT1. The polyclonal antibody only recognized the cloned porcine DNMT1 and not the previously reported protein due to a single amino acid difference in the antigenic peptide region. However, the polyclonal antibody recognized the endogenous DNMT1 in several porcine cells (PAM, PK15, ST, and PIEC) and the cells of other species (HEK-293T, Marc-145, MDBK, and MDCK cells). Moreover, our results demonstrated that all the detected tissues of piglet express DNMT1, which is the same as that in porcine alveolar macrophages. In summary, we have identified a porcine DNMT1 variant with sequence and expression analyses.


Assuntos
Aminoácidos , Anticorpos , DNA (Citosina-5-)-Metiltransferase 1 , Animais , Sequência de Aminoácidos , Clonagem Molecular , DNA , Mamíferos , Metiltransferases , Suínos/genética , DNA (Citosina-5-)-Metiltransferase 1/genética
2.
Viruses ; 15(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36992483

RESUMO

PRRSV infects CD163-positive macrophages and skews their polarization toward an M2 phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differentiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system. To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3 antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3 repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant upregulation of proinflammatory genes (TNF-α, IL-6, IL-1ß and IL-12). Upon immunological synapse activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant protein A3 provided better protection against PRRSV infection, suggested by its capability to reeducate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type immune response within the immunological synapse.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Receptor 3 Toll-Like , Receptores Toll-Like , Interleucina-12 , Imunidade Inata , Imunomodulação , Proteínas Recombinantes/genética
3.
Front Immunol ; 13: 1016268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389683

RESUMO

Previous studies have shown that interferon-mediated antiviral activity is subtype-dependent. Using a whole transcriptome procedure, we aimed to characterize the small RNA transcriptome (sRNA-Seq) and specifically the differential microRNA (miRNA) responses in porcine alveolar macrophages (PAMs) upon antiviral activation during viral infection and interferon (IFN) stimulation. Data showed that near 90% of the qualified reads of sRNA were miRNAs, and about 10% of the other sRNAs included rRNA, snoRNA, snRNA, and tRNA in order of enrichment. As the majority of sRNA (>98%) were commonly detected in all PAM samples under different treatments, about 2% sRNA were differentially expressed between the different antiviral treatments. Focusing on miRNA, 386 miRNA were profiled, including 331 known and 55 novel miRNA sequences, of which most were ascribed to miRNA families conserved among vertebrates, particularly mammalian species. Of the miRNA profiles comparably generated across the different treatments, in general, significantly differentially expressed miRNA (SEM) demonstrated that: (1) the wild-type and vaccine strains of a porcine arterivirus (a.k.a., PRRSV) induced nearly reversed patterns of up- or down-regulated SEMs; (2) similar SEM patterns were found among the treatments by the vaccine strain and antiviral IFN-α1/-ω5 subtypes; and (3) the weak antiviral IFN-ω1, however, remarked a suppressive SEM pattern as to SEMs upregulated in the antiviral treatments by the vaccine and IFN-α1/-ω5 subtypes. Further articulation identified SEMs commonly or uniquely expressed in different treatments, and experimentally validated that some SEMs including miR-10b and particularly miR-9-1 acted significantly in regulation of differential antiviral reactions stimulated by different IFN subtypes. Therefore, this study provides a general picture of porcine sRNA composition and pinpoints key SEMs underlying antiviral regulation in PAMs correlated to a typical respiratory RNA virus in pigs.


Assuntos
Interferons , MicroRNAs , Suínos , Animais , Interferons/genética , Macrófagos Alveolares , Transcriptoma , Antivirais , MicroRNAs/genética , Mamíferos/genética
4.
Cells ; 11(19)2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230948

RESUMO

Beneficial microbes with immunomodulatory capacities (immunobiotics) and their non-viable forms (postimmunobiotics) could be effectively utilized in formulations towards the prevention of respiratory viral infections. In this study, novel immunobiotic strains with the ability to increase antiviral immunity in porcine alveolar macrophages were selected from a library of Lactobacillus gasseri. Postimmunobiotics derived from the most remarkable strains were also evaluated in their capacity to modulate the immune response triggered by Toll-like receptor 3 (TLR3) in alveolar macrophages and to differentially regulate TLR3-mediated antiviral respiratory immunity in infant mice. We provide evidence that porcine alveolar macrophages (3D4/31 cells) are a useful in vitro tool for the screening of new antiviral immunobiotics and postimmunobiotics by assessing their ability to modulate the expression IFN-ß, IFN-λ1, RNAseL, Mx2, and IL-6, which can be used as prospective biomarkers. We also demonstrate that the postimmunobiotics derived from the Lactobacillus gasseri TMT36, TMT39 and TMT40 (HK36, HK39 or HK40) strains modulate the innate antiviral immune response of alveolar macrophages and reduce lung inflammatory damage triggered by TLR3 activation in vivo. Although our findings should be deepened and expanded, the results of the present work provide a scientific rationale for the use of nasally administered HK36, HK39 or HK40 to beneficially modulate TLR3-triggerd respiratory innate immune response.


Assuntos
Macrófagos Alveolares , Receptor 3 Toll-Like , Animais , Antivirais , Imunidade Inata , Interleucina-6 , Camundongos , Suínos
5.
Front Microbiol ; 13: 970501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110293

RESUMO

African swine fever virus (ASFV) is a highly infectious and lethal swine pathogen that causes severe socio-economic consequences in affected countries. Unfortunately, effective vaccine for combating ASF is unavailable so far, and the prevention and control strategies for ASFV are still very limited. Toosendanin (TSN), a triterpenoid saponin extracted from the medicinal herb Melia toosendan Sieb. Et Zucc, has been demonstrated to possess analgesic, anti-inflammatory, anti-botulism and anti-microbial activities, and was used clinically as an anthelmintic, while the antiviral effect of TSN on ASFV has not been reported. In this study, we revealed that TSN exhibited a potent inhibitory effect on ASFV GZ201801-38 strain in porcine alveolar macrophages (PAMs; EC50 = 0.085 µM, SI = 365) in a dose-dependent manner. TSN showed robust antiviral activity in different doses of ASFV infection and reduced the transcription and translation levels of ASFV p30 protein, viral genomic DNA quantity as well as viral titer at 24 and 48 h post-infection. In addition, TSN did not affect virion attachment and release but intervened in its internalization in PAMs. Further investigations disclosed that TSN played its antiviral role by upregulating the host IFN-stimulated gene (ISG) IRF1 rather than by directly inactivating the virus particles. Overall, our results suggest that TSN is an effective antiviral agent against ASFV replication in vitro and may have the potential for clinical use.

6.
Vet Microbiol ; 273: 109527, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961273

RESUMO

African swine fever (ASF) is a devastating infectious disease that causes significant economic losses to the pig industry worldwide. Luteolin is abundant in onion leaves, carrots, broccoli, and apple skin and exerts various biological activities, including anti-cancer and anti-virus effects. Our aim was to demonstrate the mechanism of action and potent antiviral activity of luteolin against ASF virus (ASFV) in porcine alveolar macrophages. We performed cell viability, hemadsorption, indirect immunofluorescence, western blotting, and quantitative real-time polymerase chain reaction assays to investigate the effect of luteolin on ASFV. Notably, luteolin restricted ASFV replication in a dose-dependent manner. The anti-ASFV activity of luteolin was maintained for 24-72 h. Subsequent experiments revealed that luteolin could block multiple stages of the ASFV replication cycle, including those at 6-9 h and 12-15 h after infection, instead of directly interacting with ASFV. Moreover, ASFV infection stimulated the expression of phosphorylated nuclear factor (NF)-κB, interleukin (IL)- 6, and phosphorylated signal transducer and activator of transcription 3 (STAT3). However, luteolin downregulated ASFV-induced NF-κB, IL-6, and STAT3 expression. Importantly, NF-κB agonist CU-T12-9 weakened the inhibitory effects of luteolin on NF-κB and STAT3. Moreover, CU-T12-9 partially restored the inhibitory effect of luteolin on ASFV. Similarly, luteolin reduced ASFV-induced activating transcription factor 6 (ATF6) expression, and CU-T12-9 weakened the inhibitory effect of luteolin on ATF6. Our findings suggested that luteolin inhibited ASFV replication by regulating the NF-κB/STAT3/ATF6 signaling pathway and might provide a rationale for anti-ASFV drug development.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Animais , Fator 6 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/farmacologia , Vírus da Febre Suína Africana/fisiologia , Interleucina-6/metabolismo , Luteolina/farmacologia , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Suínos , Replicação Viral
7.
Microbiol Spectr ; 10(5): e0181922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040198

RESUMO

Outer membrane vesicles (OMVs) are spontaneously released by Gram-negative bacteria, including Actinobacillus pleuropneumoniae, which causes contagious pleuropneumonia in pigs and leads to considerable economic losses in the swine industry worldwide. A. pleuropneumoniae OMVs have previously been demonstrated to contain Apx toxins and proteases, as well as antigenic proteins. Nevertheless, comprehensive characterizations of their contents and interactions with host immune cells have not been made. Understanding the protein compositions and immunomodulating ability of A. pleuropneumoniae OMVs could help illuminate their biological functions and facilitate the development of OMV-based applications. In the current investigation, we comprehensively characterized the proteome of native A. pleuropneumoniae OMVs. Moreover, we qualitatively and quantitatively compared the OMV proteomes of a wild-type strain and three mutant strains, in which relevant genes were disrupted to increase OMV production and/or produce OMVs devoid of superantigen PalA. Furthermore, the interaction between A. pleuropneumoniae OMVs and porcine alveolar macrophages was also characterized. Our results indicate that native OMVs spontaneously released by A. pleuropneumoniae MIDG2331 appeared to dampen the innate immune responses by porcine alveolar macrophages stimulated by either inactivated or live parent cells. The findings suggest that OMVs may play a role in manipulating the porcine defense during the initial phases of the A. pleuropneumoniae infection. IMPORTANCE Owing to their built-in adjuvanticity and antigenicity, bacterial outer membrane vesicles (OMVs) are gaining increasing attention as potential vaccines for both human and animal use. OMVs released by Actinobacillus pleuropneumoniae, an important respiratory pathogen in pigs, have also been investigated for vaccine development. Our previous studies have shown that A. pleuropneumoniae secretes OMVs containing multiple immunogenic proteins. However, immunization of pigs with these vesicles was not able to relieve the pig lung lesions induced by the challenge with A. pleuropneumoniae, implying the elusive roles that A. pleuropneumoniae OMVs play in host-pathogen interaction. Here, we showed that A. pleuropneumoniae secretes OMVs whose yield and protein content can be altered by the deletion of the nlpI and palA genes. Furthermore, we demonstrate that A. pleuropneumoniae OMVs dampen the immune responses in porcine alveolar macrophages stimulated by A. pleuropneumoniae cells, suggesting a novel mechanism that A. pleuropneumoniae might use to evade host defense.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Animais , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas , Imunidade , Macrófagos Alveolares , Peptídeo Hidrolases , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Proteoma , Superantígenos , Suínos
8.
Toxins (Basel) ; 14(6)2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35737034

RESUMO

Aflatoxin B1 (AFB1) is a type of mycotoxin produced by the fungi Aspergillus flavus and Aspergillus parasiticus and is commonly found in cereals, oils and foodstuffs. In order to understand the toxic effects of AFB1 exposure on Porcine alveolar macrophages (3D4/2 cell), the 3D4/2 cells were exposed to 40 µg/mL AFB1 for 24 h in vitro, and several methods were used for analysis. Edu and TUNEL analysis showed that the proliferation of 3D4/2 cells was significantly inhibited and the apoptosis of 3D4/2 cells was significantly induced after AFB1 exposure compared with that of the control group. Whole-transcriptome analysis was performed to reveal the non-coding RNA alteration in 3D4/2 cells after AFB1 exposure. It was found that the expression of cell-cycle-related and apoptosis-related genes was altered after AFB1 exposure, and lncRNAs and miRNAs were also significantly different among the experimental groups. In particular, AFB1 exposure affected the expression of lncRNAs associated with cellular senescence signaling pathways, such as MSTRG.24315 and MSTRG.80767, as well as related genes, Cxcl8 and Gadd45g. In addition, AFB1 exposure affected the expression of miRNAs associated with immune-related genes, such as miR-181a, miR-331-3p and miR-342, as well as immune-related genes Nfkb1 and Rras2. Moreover, the regulation networks between mRNA-miRNAs and mRNA-lncRNAs were confirmed by the results of RT-qPCR and immunofluorescence. In conclusion, our results here demonstrate that AFB1 exposure impaired proliferation of 3D4/2 cells via the non-coding RNA-mediated pathway.


Assuntos
MicroRNAs , RNA Longo não Codificante , Aflatoxina B1/toxicidade , Animais , Perfilação da Expressão Gênica , Macrófagos Alveolares , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro , Suínos
9.
Ecotoxicol Environ Saf ; 235: 113447, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358920

RESUMO

Ochratoxin A (OTA), frequently existing in the food and feeds, could induce immunotoxicity. Porcine circovirus type 2 (PCV2), as a primary causative agent of porcine circovirus-associated disease, also could induce immunosuppression. However, it is still unknown whether PCV2 infection impacts OTA-induced immunotoxicity. The pigs and porcine alveolar macrophages (PAMs) were used as the model in the present experiment. The results in vivo indicated that PCV2 infection exacerbated OTA-induced immunotoxicity, NF-κB p65 phosphorylation, and TLR4 and MyD88 mRNA and protein expression in spleen. The results in vitro showed that OTA at 7.0 and 9.0 µM decreased cell viability and increased LDH release of PAMs without PCV2 infection. However, with PCV2 infection, OTA at 5.0, 7.0 and 9.0 µM significantly decreased cell viability and increased LDH release compared with absence of PCV2 infection. In addition, OTA at 5.0 and 7.0 µM significantly increased Annexin V/PI-positive rate, apoptosis of nuclear, γ-H2AX foci, IL-1α and TNF-α expression in PAMs with PCV2 infection compared with absence of PCV2 infection. In addition, PCV2 infection enhanced OTA-induced TLR4 and MyD88 mRNA and protein expression and NF-κB p65 phosphorylation. Knockdown of TLR4 alleviated the exacerbating effects of PCV2 infection on OTA-induced cytotoxicity, apoptosis and DNA damage in PAMs. These results indicated that PCV2 infection aggravated OTA-induced immunotoxicity and reduced the dose of OTA-induced immunotoxicity via TLR4/NF-κB p65 signaling pathway, which could provide basis for establishing limits for OTA.


Assuntos
Circovirus , Ocratoxinas , Animais , Macrófagos Alveolares , Ocratoxinas/toxicidade , Transdução de Sinais , Suínos
10.
Toxicol In Vitro ; 80: 105326, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134483

RESUMO

Mogroside V is the main bioactive component of Siraitia grosvenorii (Swingle), and has a potential anti-inflammatory function. However, the effect of mogroside V on fine particulate matter (PM2.5)-induced inflammation has not been reported. In the present study, the biological effect of mogroside V on inflammation was investigated in PM2.5- treated porcine alveolar macrophages (3D4/21). The results showed that mogroside V significantly inhibited PM2.5-induced nitric oxide (NO) production and rescued the arginase activity inhibited by PM2.5. In the presence of mogroside V, the upregulation of IL-18, TNF-α and COX-2 by PM2.5 in 3D4/21 cells was inhibited. Mogroside V attenuated PM2.5-induced phosphorylation of NF-κB p65 and the expression of NLRP3. Mogroside V reduced intracellular ROS levels induced by PM2.5. In the transcriptomic analysis, inflammation-related genes in 3D4/21 cells were not significantly affected after treatment with mogroside V. These results indicated that mogroside V can alleviate the inflammatory response of porcine alveolar macrophages induced by PM2.5 from pig house and that mogroside V may play the role through the antioxidant function of eliminating ROS. Mogroside V has a clear anti-inflammatory function in the presence of inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Material Particulado/toxicidade , Triterpenos/farmacologia , Animais , Arginase/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Inflamassomos/genética , Macrófagos Alveolares/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Suínos , Receptor 4 Toll-Like/metabolismo , Transcriptoma/efeitos dos fármacos
11.
J Virol ; 96(1): e0150021, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613824

RESUMO

African swine fever (ASF), a devastating infectious disease in swine, severely threatens the global pig farming industry. Disease control has been hampered by the unavailability of vaccines. Here, we report that deletion of the QP509L and QP383R genes (ASFV-ΔQP509L/QP383R) from the highly virulent ASF virus (ASFV) CN/GS/2018 strain results in complete viral attenuation in swine. Animals inoculated with ASFV-ΔQP509L/QP383R at a 104 50% hemadsorbing dose (HAD50) remained clinically normal during the 17-day observational period. All ASFV-ΔQP509L/QP383R-infected animals had low viremia titers and developed a low-level p30-specific antibody response. However, ASFV-ΔQP509L/QP383R did not induce protection against challenge with the virulent parental ASFV CN/GS/2018 isolate. RNA-sequencing analysis revealed that innate immune-related genes (Ifnb, Traf2, Cxcl10, Isg15, Rantes, and Mx1) were significantly lower in ASFV-ΔQP509L/QP383R-infected than in ASFV-infected porcine alveolar macrophages. In addition, ASFV-ΔQP509L/QP383R-infected pigs had low levels of interferon-ß (IFN-ß) based on enzyme-linked immunosorbent assay (ELISA). These data suggest that deletion of ASFV QP509L/383R reduces virulence but does not induce protection against lethal ASFV challenge. IMPORTANCE African swine fever (ASF) is endemic to several parts of the word, with outbreaks of the disease devastating the swine farming industry; currently, no commercially available vaccine exists. Here, we report that deletion of the previously uncharacterized QP509L and QP383R viral genes completely attenuates virulence in the ASF virus (ASFV) CN/GS/2018 isolate. However, ASFV-ΔQP509L/QP383R-infected animals were not protected from developing an ASF infection after challenge with the virulent parental virus. ASFV-ΔQP509L/QP383R induced lower levels of innate immune-related genes and IFN-ß than the parental virus. Our results increase our knowledge of developing an effective and live ASF attenuated vaccine.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Interações Hospedeiro-Patógeno , Deleção de Sequência , Proteínas Virais/genética , Febre Suína Africana/imunologia , Vírus da Febre Suína Africana/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Células Cultivadas , Resistência à Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunização , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Mutagênese , Suínos , Transcriptoma , Virulência/genética , Fatores de Virulência/genética , Replicação Viral
12.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3201-3210, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34622628

RESUMO

In order to study the signal pathway secreting type Ⅰ interferon in porcine alveolar macrophages (PAMs) infected with porcine circovirus type 2 (PCV2), the protein and the mRNA expression levels of cGAS/STING pathways were analyzed by ELISA, Western blotting and quantitative reverse transcriptase PCR in PAMs infected with PCV2. In addition, the roles of cGAS, STING, TBK1 and NF-κB/P65 in the generation of type I interferon (IFN-I) from PAMs were analyzed by using the cGAS and STING specific siRNA, inhibitors BX795 and BAY 11-7082. The results showed that the expression levels of IFN-I increased significantly at 48 h after infection with PCV2 (P<0.05), the mRNA expression levels of cGAS increased significantly at 48 h and 72 h after infection (P<0.01), the mRNA expression levels of STING increased significantly at 72 h after infection (P<0.01), and the mRNA expression levels of TBK1 and IRF3 increased at 48 h after infection (P<0.01). The protein expression levels of STING, TBK1 and IRF3 in PAMs infected with PCV2 were increased, the content of NF-κB/p65 was decreased, and the nuclear entry of NF-κB/p65 and IRF3 was promoted. After knocking down cGAS or STING expression by siRNA, the expression level of IFN-I was significantly decreased after PCV2 infection for 48 h (P<0.01). BX795 and BAY 11-7082 inhibitors were used to inhibit the expression of IRF3 and NF-κB, the concentration of IFN-I in BX795-treated group was significantly reduced than that of the PCV2 group (P<0.01), while no significant difference was observed between the BAY 11-7028 group and the PCV2 group. The results showed that PAMs infected with PCV2 induced IFN-I secretion through the cGAS/STING/TBK1/IRF3 signaling pathway.


Assuntos
Circovirus , Interferon Tipo I , Macrófagos Alveolares , Transdução de Sinais , Animais , Células Cultivadas , Interferon Tipo I/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Suínos
13.
Virol J ; 18(1): 170, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412678

RESUMO

BACKGROUND: African swine fever virus (ASFV) is a highly lethal virus that can infect porcine alveolar macrophages (PAMs). Since ASFV, China has dealt with a heavy blow to the pig industry. However, the effect of infection of ASFV strains isolated from China on PAM transcription level is not yet clarified. METHODS: In this study, RNA sequencing (RNA-seq) was used to detect the differential expression of genes in PAMs at different time points after ASFV-CN/GS/2018 infection. The fluorescent quantitative polymerase chain reaction (qPCR) method was used to confirm the altered expression of related genes in PAMs infected with ASFV. RESULTS: A total of 1154 differentially expressed genes were identified after ASFV-CN/GS/2018 infection, of which 816 were upregulated, and 338 were downregulated. GO and KEGG analysis showed that these genes were dynamically enriched in various biological processes, including innate immune response, inflammatory response, chemokines, and apoptosis. Furthermore, qPCR verified that the DEAD box polypeptide 58 (DDX58), Interferon-induced helicase C domain-containing protein 1 (IFIH1), Toll-like receptor 3 (TLR3), and TLR7 of PAMs were upregulated after ASFV infection, while TLR4 and TLR6 had a significant downward trend during ASFV infection. The expression of some factors related to antiviral and inflammation was altered significantly after ASFV infection, among which interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), IFIT2, Interleukin-6 (IL-6) were upregulated, and Ewing's tumor-associated antigen 1 homolog (ETAA1) and Prosaposin receptor GPR37 (GPR37) were downregulated. In addition, we discovered that ASFV infection is involved in the regulation of chemokine expression in PAMs, and the chemokines, such as C-X-C motif chemokine 8 (CXCL8) and CXCL10, were upregulated after infection. However, the expression of chemokine receptor C-X-C chemokine receptor type 2 (CXCR2) is downregulated. Also, that the transcriptional levels of pro-apoptotic and anti-apoptotic factors changed after infection. CONCLUSIONS: After ASFV-CN/GS/2018 infection, the expression of some antiviral and inflammatory factors in PAMs changed significantly. The ASFV infection may activates the RLR and TLR signaling pathways. In addition, ASFV infection is involved in regulating of chemokine expression in PAMs and host cell apoptosis.


Assuntos
Febre Suína Africana , Expressão Gênica , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Vírus da Febre Suína Africana , Animais , Quimiocinas/imunologia , Imunidade Inata , Macrófagos/imunologia , Receptores de Quimiocinas/imunologia , Suínos , Receptores Toll-Like
14.
Microb Pathog ; 158: 105102, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34298124

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) isolates show high genetic and pathogenic diversity. The mechanisms underlying different virulence of PRRSV isolates are still not fully clarified. Two highly homologous PRRSV isolates (XJ17-5 and JSTZ1712-12) with distinct virulence were identified in our previous study. To evaluate the association between host responses and different virulence, here we investigated the transcriptomic profiles of porcine alveolar macrophages (PAMs) infected with these two isolates. RNA-Seq results showed that there are 1932 differential expression genes (DEGs) between two PRRSV infected groups containing 1067 upregulation and 865 downregulation genes. Compared with the avirulent JSTZ1712-12 infected group, GO analysis identified significant enrichment gene sets not only associated with virus infection but also innate immune response in the virulent XJ17-5 infected group. In addition, KEGG analysis indicated significantly enriched genes associated with NOD-like and RIG-I-like receptor signaling pathways in XJ17-5 vs JSTZ1712-12 group. Furthermore, XJ17-5 isolate induced significantly higher levels of innate immune response associated genes (IL-1ß, CXCL2, S100A8, OAS2, MX1, IFITM3, ISG15 and IFI6) than JSTZ1712-12 isolate, which were further confirmed by real-time PCR. Given that these two isolates share similar replication efficiency in vivo and in vitro, our results indicated that distinct virulence of PRRSV isolates is associated with different host innate immune responses.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Imunidade Inata , Macrófagos Alveolares , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos , Transcriptoma , Virulência
15.
Vet World ; 14(3): 794-802, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33935430

RESUMO

BACKGROUND AND AIM: African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS: The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS: The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION: The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.

16.
Front Immunol ; 12: 635097, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968026

RESUMO

In Glässer's disease outbreaks, Glaesserella (Haemophilus) parasuis has to overcome the non-specific immune system in the lower respiratory tract, the alveolar macrophages. Here we showed that porcine alveolar macrophages (PAMs) were able to recognize and phagocyte G. parasuis with strain-to-strain variability despite the presence of the capsule in virulent (serovar 1, 5, 12) as well in avirulent strains (serovar 6 and 9). The capsule, outer membrane proteins, virulence-associated autotransporters, cytolethal distending toxins and many other proteins have been identified as virulence factors of this bacterium. Therefore, we immunized pigs with the crude capsular extract (cCE) from the virulent G. parasuis CAPM 6475 strain (serovar 5) and evaluated the role of the anti-cCE/post-vaccinal IgG in the immune response of PAMs to in vitro infection with various G. parasuis strains. We demonstrated the specific binding of the antibodies to the cCE by Western-blotting assay and immunoprecipitation as well as the specific binding to the strain CAPM 6475 in transmission electron microscopy. In the cCE, we identified several virulence-associated proteins that were immunoreactive with IgG isolated from sera of immunized pigs. Opsonization of G. parasuis strains by post-vaccinal IgG led to enhanced phagocytosis of G. parasuis by PAMs at the first two hours of infection. Moreover, opsonization increased the oxidative burst and expression/production of both pro- and anti-inflammatory cytokines. The neutralizing effects of these antibodies on the antioxidant mechanisms of G. parasuis may lead to attenuation of its virulence and pathogenicity in vivo. Together with opsonization of bacteria by these antibodies, the host may eliminate G. parasuis in the infection site more efficiently. Based on these results, the crude capsular extract is a vaccine candidate with immunogenic properties.


Assuntos
Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/imunologia , Infecções por Haemophilus/imunologia , Haemophilus parasuis/imunologia , Macrófagos Alveolares/imunologia , Animais , Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Especificidade de Anticorpos , Células Cultivadas , Infecções por Haemophilus/metabolismo , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/patogenicidade , Cinética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Sorogrupo , Sus scrofa , Virulência
17.
Genes (Basel) ; 11(9)2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927661

RESUMO

DNA methyltransferase 3B (DNMT3B) as one member of the DNMT family functions as a de novo methyltransferase, characterized as more than 30 splice variants in humans and mice. However, the expression patterns of DNMT3B in pig as well as the biological function of porcine DNMT3B remain to be determined. In this study, we first examined the expression patterns of DNMT3B in porcine alveolar macrophages (PAM). We demonstrated that only DNMT3B2 and DNMT3B3 were the detectable isoforms in PAM. Furthermore, we revealed that DNTM3B2 was the predominant isoform in PAM. Next, in the model of LPS (lipopolysaccharide)-activated PAM, we showed that in comparison to the unstimulated PAM, (1) expression of DNTM3B is reduced; (2) the methylation level of TNF-α gene promoter is decreased. We further establish that DNMT3B2-mediated methylation of TNF-α gene promoter restricts induction of TNF-α in the LPS-stimulated PAM. In summary, these findings reveal that DNMT3B2 is the predominant isoform in PAM and its downregulation contributes to expression of TNF-α via hypomethylation of TNF-α gene promoter in the LPS-stimulated PAM.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Animais Recém-Nascidos , DNA (Citosina-5-)-Metiltransferases/genética , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Suínos , Fator de Necrose Tumoral alfa/genética , DNA Metiltransferase 3B
18.
Virol J ; 17(1): 116, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32727587

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the pork industry globally. PRRS is caused by PRRS virus (PRRSV). Currently there are no effective treatments against this swine disease. METHODS: Through artificial intelligence molecular screening, we obtained a set of small molecule compounds predicted to target the scavenger receptor cysteine-rich domain 5 (SRCR5) of CD163, which is a cell surface receptor specific for PRRSV infection. These compounds were screened using a cell-based bimolecular fluorescence complementation (BiFC) assay, and the function of positive hit was further evaluated and validated by PRRSV-infection assay using porcine alveolar macrophages (PAMs). RESULTS: Using the BiFC assay, we identified one compound with previously unverified function, 4-Fluoro-2-methyl-N-[3-(3-morpholin-4-ylsulfonylanilino)quinoxalin-2-yl]benzenesulfonamide (designated here as B7), that significantly inhibits the interaction between the PRRSV glycoprotein (GP2a or GP4) and the CD163-SRCR5 domain. We further demonstrated that compound B7 inhibits PRRSV infection of PAMs, the primary target of PRRSV in a dose-dependent manner. B7 significantly inhibited the infection caused by both type I and type II PRRSV strains. Further comparison and functional evaluation of chemical compounds structurally related to B7 revealed that the 3-(morpholinosulfonyl)aniline moiety of B7 or the 3-(piperidinylsulfonyl)aniline moiety in a B7 analogue is important for the inhibitory function against PRRSV infection. CONCLUSIONS: Our study identified a novel strategy to potentially prevent PRRSV infection in pigs by blocking the PRRSV-CD163 interaction with small molecules.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Receptores de Superfície Celular/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Inteligência Artificial , Linhagem Celular , Células HEK293 , Humanos , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Domínios Proteicos , Suínos
19.
Parasitol Res ; 119(6): 1819-1828, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32399721

RESUMO

Toxoplasma gondii is an obligate protozoan parasite infecting diverse hosts. Studies have demonstrated that different hosts respond differently to Toxoplasma infection. Pigs are among the most susceptible hosts of T. gondii, but the host-pathogen interactions that shape the outcome of infection in pigs are completely unknown. Here, we used dual RNA-seq to profile the transcriptomic changes of porcine alveolar macrophages (PAMs) upon Toxoplasma infection. Our results indicated that PAMs initiated different responses to Toxoplasma infection compared with mouse macrophages. First, although infected PAMs upregulated numerous pro-inflammatory factors, IL-12, which plays critical roles in IL-12~IFN-γ-mediated immunity against Toxoplasma infection in mice, was found unchanged during PAM infection. Second, the gene encoding iNOS that is responsible for nitric oxide (NO) production was also not induced in infected PAMs. Consistently, there was no NO level change in PAMs after infection. Third, it seems like Toxoplasma infection inhibited apoptosis in PAMs. On the parasite side, the most obvious change is the upregulation of genes involved in metabolism and macromolecule synthesis, such as the type II fatty acid synthesis in the apicoplast. Together, these results revealed distinct responses of PAMs to Toxoplasma infection and provide novel insights into Toxoplasma-pig interactions.


Assuntos
Macrófagos Alveolares/parasitologia , Toxoplasma/fisiologia , Animais , Apoptose/genética , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Inflamação/genética , Proteínas de Protozoários/genética , Transdução de Sinais/genética , Suínos , Toxoplasma/genética , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
20.
Dev Comp Immunol ; 108: 103690, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32222356

RESUMO

Notch signaling, an evolutionarily conserved signal pathway has emerged as a key signal pathway to regulate host immune response but the contribution of Notch signaling to immune response in pigs remains unknown. Infection of porcine alveolar macrophages (PAM) with porcine reproductive and respiratory syndrome virus (PRRSV) triggers expression of Jagged1 mRNA, suggesting that Notch signaling might play a role in the immune response to PRRSV infection. To further explore it, we examined the expression profile of Notch molecules in PAM following a highly pathogenic PRRSV (HP-PRRSV) strain infection. We demonstrated that HP-PRRSV infection resulted in the induction of Notch ligands (Jagged1, Dll3, Dll4), the transcription factor RBP-J, and the target gene Hes1, consistent with activation of Notch signaling. Next, using DAPT treatment and the knockdown of RBP-J illustrated that inhibition of activation of Notch signaling attenuated induction of the inflammatory cytokines (TNF-α and IL-1ß) instead of viral replication in PAM during HP-PRRSV infection. Furthermore, the knockdown of Jagged1, the most induced ligand not only inhibited activation of Notch signaling, but also reduced the expression of inflammatory cytokines without any influence in viral replication. Moreover, our data revealed that several signaling including NF-κB, MAPK and Notch signaling contributed to the induction of Jagged1 in PAM during HP-PRRSV infection. In summary, these findings reveal that Notch as an important signaling pathway could contribute to the regulation of inflammatory response induced by HP-PRRSV infection.


Assuntos
Macrófagos Alveolares/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Receptores Notch/metabolismo , Sus scrofa/imunologia , Animais , Células Cultivadas , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Interleucina-1beta/metabolismo , Proteína Jagged-1/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Cultura Primária de Células , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sus scrofa/virologia , Suínos , Fatores de Transcrição HES-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA