RESUMO
Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers, and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals. Summary Sentence The present study investigated the effect of NGF on testosterone synthesis in porcine theca cells. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells.
Assuntos
Fator de Crescimento Neural , Testosterona , Células Tecais , Animais , Células Tecais/metabolismo , Células Tecais/efeitos dos fármacos , Suínos , Feminino , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Testosterona/farmacologia , Testosterona/biossíntese , Testosterona/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismoRESUMO
Excessive secretion of androgens including androstenedione and testosterone in theca cells frequently causes female infertility in mammals. Melatonin is a potent inhibitor of androgen production in gonadal cells of several species in a membrane receptor-dependent manner. However, the function of melatonin in steroidogenesis of porcine theca cells remains unclear. Here we report that melatonin inhibits androgen biosynthesis independently of its membrane receptors in pigs. Using flow cytometry, immunofluorescence and RT-PCR we showed that the vast majority of cells isolated from the theca layer of antral follicles are indeed theca cells. Furthermore, we demonstrated that of the two of melatonin membrane receptors encoded in the porcine genome, theca cells exclusively express melatonin receptor 1B. Cell counting analysis indicated that different concentrations of melatonin did not alter the normal viability and proliferation of theca cells. Additionally, hormone radioimmunoassay and qPCR respectively showed that a high concentration of melatonin significantly repressed both androgen production and expression of steroidogenic genes involving StAR, CYP11A1, HSD3ß and SET (Pâ¯<â¯0.05), but did not impair progesterone production. Interestingly, these effects were not reversed by N-acetyl-2-benzyltryptamin, a melatonin membrane receptor antagonist. Overall, these results demonstrate that melatonin inhibits androgen production in porcine theca cells independently of its membrane receptor.