Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
ACS Nano ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066712

RESUMO

Due to their physical properties including high thermal stability, very low vapor pressure, and high microwave absorption, ionic liquids have attracted great attention as solvents for the synthesis of nanomaterials, being considered as greener alternatives to traditional solvents. While usual solvents often need additives like surfactants, polymers, or other ligands to avoid nanoparticle coalescence, some ionic liquids can stabilize nanoparticles in dispersion without any additive. In order to quantify how the ionic liquids can affect both the aggregation thermodynamics and kinetics, molecular dynamics simulations were performed to simulate the evolution of concentrated dispersions and to compute the potential of mean force between nanoparticles of both hydrophilic and hydrophobic natures in two imidazolium-based ionic liquids, which differ from each other by the length of the cation alkyl group. Depending on the nature of the nanoparticle, structured layers of the polar and apolar regions of the ionic liquid can be formed close to its surface, and those layers lead to activation barriers for dispersed particles to get in contact. If the alkyl group of the ionic liquid is long enough to lead to domain segregation between the ionic and apolar portions of the solvent, the layered structure around the particle becomes more structured and propagates several nanometers away from its surface. This leads to stronger barriers close to the contact and also multiple barriers at larger distances that result from the unfavorable superposition of solvent layers of opposing nature when the nanoparticles approach each other. Those long-range solvent-mediated forces not only provide kinetic stability to dispersions but also affect their dynamics and lead to a long-range ordering between dispersed particles that can be explored as a template for the synthesis of complex materials.

2.
Comput Struct Biotechnol J ; 25: 61-74, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38695015

RESUMO

Antimicrobial peptides (AMPs) are increasingly recognized as potent therapeutic agents, with their selective affinity for pathological membranes, low toxicity profile, and minimal resistance development making them particularly attractive in the pharmaceutical landscape. This study offers a comprehensive analysis of the interaction between specific AMPs, including magainin-2, pleurocidin, CM15, LL37, and clavanin, with lipid bilayer models of very different compositions that have been ordinarily used as biological membrane models of healthy mammal, cancerous, and bacterial cells. Employing unbiased molecular dynamics simulations and metadynamics techniques, we have deciphered the intricate mechanisms by which these peptides recognize pathogenic and pathologic lipid patterns and integrate into lipid assemblies. Our findings reveal that the transverse component of the peptide's hydrophobic dipole moment is critical for membrane interaction, decisively influencing the molecule's orientation and expected therapeutic efficacy. Our approach also provides insight on the kinetic and dynamic dependence on the peptide orientation in the axial and azimuthal angles when coming close to the membrane. The aim is to establish a robust framework for the rational design of peptide-based, membrane-targeted therapies, as well as effective quantitative descriptors that can facilitate the automated design of novel AMPs for these therapies using machine learning methods.

3.
Carbohydr Polym ; 334: 122018, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553217

RESUMO

Sugammadex, marketed as Bridion™, is an approved cyclodextrin (CD) based drug for the reversal of neuromuscular blockade in adults undergoing surgery. Sugammadex forms an inclusion complex with the neuromuscular blocking agent (NMBA) rocuronium, allowing rapid reversal of muscle paralysis. In silico methods have been developed for studying CD inclusion complexes, aimed at accurately predicting their structural, energetic, dynamic, and kinetic properties, as well as binding constants. Here, a computational study aimed at characterizing the sugammadex-rocuronium system from the perspective of docking calculations, free molecular dynamics (MD) simulations, and biased metadynamics simulations with potential of mean force (PMF) calculations is presented. The aim is to provide detailed information about this system, as well as to use it as a model system for validation of the methods. This method predicts results in line with experimental evidence for both the optimal structure and the quantitative value for the binding constant. Interestingly, there is a less profound preference for the orientation than might be assumed based on electrostatic interactions, suggesting that both orientations may exist in solution. These results show that this technology can efficiently analyze CD inclusion complexes and could be used to facilitate the development and optimization of novel applications for CDs.


Assuntos
Ciclodextrinas , Fármacos Neuromusculares não Despolarizantes , gama-Ciclodextrinas , Humanos , Adulto , Sugammadex , Rocurônio , gama-Ciclodextrinas/química , Simulação de Dinâmica Molecular , Fármacos Neuromusculares não Despolarizantes/química , Androstanóis/química
4.
Comput Struct Biotechnol J ; 23: 1117-1128, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510974

RESUMO

Cyclodextrins (CDs) are cyclic carbohydrate polymers that hold significant promise for drug delivery and industrial applications. Their effectiveness depends on their ability to encapsulate target molecules with strong affinity and specificity, but quantifying affinities in these systems accurately is challenging for a variety of reasons. Computational methods represent an exceptional complement to in vitro assays because they can be employed for existing and hypothetical molecules, providing high resolution structures in addition to a mechanistic, dynamic, kinetic, and thermodynamic characterization. Here, we employ potential of mean force (PMF) calculations obtained from guided metadynamics simulations to characterize the 1:1 inclusion complexes between four different modified ßCDs, with different type, number, and location of substitutions, and two sterol molecules (cholesterol and 7-ketocholesterol). Our methods, validated for reproducibility through four independent repeated simulations per system and different post processing techniques, offer new insights into the formation and stability of CD-sterol inclusion complexes. A systematic distinct orientation preference where the sterol tail projects from the CD's larger face and significant impacts of CD substitutions on binding are observed. Notably, sampling only the CD cavity's wide face during simulations yielded comparable binding energies to full-cavity sampling, but in less time and with reduced statistical uncertainty, suggesting a more efficient approach. Bridging computational methods with complex molecular interactions, our research enables predictive CD designs for diverse applications. Moreover, the high reproducibility, sensitivity, and cost-effectiveness of the studied methods pave the way for extensive studies of massive CD-ligand combinations, enabling AI algorithm training and automated molecular design.

5.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311178

RESUMO

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Assuntos
Receptores de AMPA , Humanos , Células HEK293 , Ligantes , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Regulação Alostérica
6.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256079

RESUMO

The emergence of multi-drug-resistant tuberculosis strains poses a significant challenge to modern medicine. The development of new antituberculosis drugs is hindered by the low permeability of many active compounds through the extremely strong bacterial cell wall of mycobacteria. In order to estimate the ability of potential antimycobacterial agents to diffuse through the outer mycolate membrane, the free energy profiles, the corresponding activation barriers, and possible permeability modes of passive transport for a series of known antibiotics, modern antituberculosis drugs, and prospective active drug-like molecules were determined using molecular dynamics simulations with the all-atom force field and potential of mean-force calculations. The membranes of different chemical and conformational compositions, density, thickness, and ionization states were examined. The typical activation barriers for the low-mass molecules penetrating through the most realistic membrane model were 6-13 kcal/mol for isoniazid, pyrazinamide, and etambutol, and 19 and 25 kcal/mol for bedaquilin and rifampicin. The barriers for the ionized molecules are usually in the range of 37-63 kcal/mol. The linear regression models were derived from the obtained data, allowing one to estimate the permeability barriers from simple physicochemical parameters of the diffusing molecules, notably lipophilicity and molecular polarizability.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Simulação de Dinâmica Molecular , Estudos Prospectivos , Parede Celular , Antituberculosos/farmacologia
7.
Mol Pharm ; 21(1): 38-52, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646561

RESUMO

The cisplatin encapsulation into carbon nanohorns (CNH) is a promising nanoformulation to circumvent the drug dissipation and to specifically accumulate it in tumor sites. Herein, biased molecular dynamics simulations were used to analyze the transmembrane transport of the CNH loaded with cisplatin through a breast cancer cell membrane prototype. The simulations revealed a four-stage mechanism: approach, insertion, permeation, and internalization. Despite the lowest structural disturbance of the membrane provided by the nanocarrier, the average free energy barrier for the translocation was 55.2 kcal mol-1, suggesting that the passive process is kinetically unfavorable. In contrast, the free energy profiles revealed potential wells of -6.8 kcal mol-1 along the insertion stage in the polar heads region of the membrane, which might enhance the retention of the drug in tumor sites; therefore, the most likely cisplatin delivery mechanism should involve the adsorption and retention of CNH on the surface of cancer cells, allowing the loaded cisplatin be slowly released and passively transported through the cell membrane.


Assuntos
Neoplasias da Mama , Cisplatino , Humanos , Feminino , Cisplatino/química , Carbono , Neoplasias da Mama/tratamento farmacológico , Transporte Biológico , Membrana Celular
8.
Mol Phys ; 121(19-20): e2236248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107421

RESUMO

The aggregation of therapeutic proteins in solution has attracted significant interest, driving efforts to understand the relationship between microscopic structural changes and protein-protein interactions determining aggregation processes in solution. Additionally, there is substantial interest in being able to predict aggregation based on protein structure as part of molecular developability assessments. Molecular Dynamics provides theoretical tools to complement experimental studies and to interrogate and identify the microscopic mechanisms determining aggregation. Here we perform all-atom MD simulations to study the structure and inter-protein interaction of the Fab and Fc fragments of the monoclonal antibody (mAb) COE3. We unravel the role of ion-protein interactions in building the ionic double layer and determining effective inter-protein interaction. Further, we demonstrate, using various state-of-the-art force fields (charmm, gromos, amber, opls/aa), that the protein solvation, ionic structure and protein-protein interaction depend significantly on the force field parameters. We perform SANS and Static Light Scattering experiments to assess the accuracy of the different forcefields. Comparison of the simulated and experimental results reveal significant differences in the forcefields' performance, particularly in their ability to predict the protein size in solution and inter-protein interactions quantified through the second virial coefficients. In addition, the performance of the forcefields is correlated with the protein hydration structure.

9.
J Biomol Struct Dyn ; : 1-11, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982256

RESUMO

Studying interactions between drugs and cell membranes is of great interest to designing novel drugs, optimizing drug delivery, and discerning drug mechanism action. In this study, we investigated the physical properties of the bilayer membrane model of POPC upon interaction with ibuprofen (IBU) using molecular dynamics simulations. The area per lipid (APL) was calculated to describe the effect of ibuprofen on the packing properties of the lipid bilayer. The APL was 0.58 nm2 and 0.63 nm2 for the membrane in low and high IBU respectively, and 0.57 nm2 for the membrane without IBU. Our finding showed that the mean square deviation (MSD) increased with increased ibuprofen content. In addition, the order parameter for the hydrocarbon chain of lipids increased with increased ibuprofen content. There was an increment in the transfer free energy after the head group region while it was maximum in the hydrophobic core for hydrogen peroxide (H2O2) (∼6.2 kcal.mol-1) and H2O (∼3.4 kcal.mol-1) which then decreased to respective values of (∼4.6 kcal.mol-1), and (∼2.3 kcal.mol-1) at the center of the bilayer in the presence of IBU. It seems that in the presence of ibuprofen, the free energy profile of the permeability of water and H2O2 significantly decreased. These findings show that ibuprofen significantly influences the physical properties of the bilayer by decreasing the packing and intermolecular interaction in the hydrocarbon chain region and increasing the water permeability of the bilayer. These results may provide insights into the local cytotoxic side effects of ibuprofen and its underlying molecular mechanisms.Communicated by Ramaswamy H. Sarma.


Ibuprofen changes the physical properties of the membrane.Ibuprofen decreases the packing and intermolecular interaction at the hydrocarbon chain of lipids.Ibuprofen increases the permeability of water and hydrogen peroxide as reactive oxygen species (ROS).Results may shed light on the local cytotoxic side effects of ibuprofen.

10.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834013

RESUMO

Gas molecules or weakly interacting molecules are commonly observed to diffuse through and fill space. Therefore, when the molecules initially confined in one compartment are allowed to move through a channel into another empty compartment, we expect that some molecules will be transported into the initially empty compartment. In this work, we thermodynamically analyze this transport process using a simple model consisting of graphene plates, a carbon nanotube (CNT), and nonpolar molecules that are weakly interacting with each other. Specifically, we calculate the free energy change, or the potential of mean force (PMF), as the molecules are transported from one compartment to another compartment. The PMF profile clearly exhibits a global minimum, or a free energy well, at the state wherein the molecules are evenly distributed over the two compartments. To better understand the thermodynamic origin of the well, we calculate the energetic and entropic contributions to the formation of the well, and we show that the entropic change is responsible for it and is the driving force for transport. Our work not only enables a fundamental understanding of the thermodynamic nature of the transport of weakly interacting molecules with molecular details, but also provides a method for calculating the free energy change during transport between two separate spaces connected by a nanochannel.


Assuntos
Nanotubos de Carbono , Entropia , Termodinâmica
11.
Methods Mol Biol ; 2705: 113-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37668972

RESUMO

Many biological functions are mediated by protein-protein interactions (PPIs), often involving specific structural modules, such as SH2 domains. Inhibition of PPIs is a pharmaceutical strategy of growing importance. However, a major challenge in the design of PPI inhibitors is the large interface involved in these interactions, which, in many cases, makes inhibition by small organic molecules ineffective. Peptides, which cover a wide range of dimensions and can be opportunely designed to mimic protein sequences at PPI interfaces, represent a valuable alternative to small molecules. Computational techniques able to predict the binding affinity of peptides for the target domain or protein represent a crucial stage in the workflow for the design of peptide-based drugs. This chapter describes a protocol to obtain the potential of mean force (PMF) for peptide-SH2 domain binding, starting from umbrella sampling (US) molecular dynamics (MD) simulations. The PMF profiles can be effectively used to predict the relative standard binding free energies of different peptide sequences.


Assuntos
Simulação de Dinâmica Molecular , Domínios de Homologia de src , Ligação Proteica , Sequência de Aminoácidos , Fluxo de Trabalho
12.
J Biomol Struct Dyn ; : 1-8, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656194

RESUMO

Water permeation through phospholipid/cholesterol bilayers is the key to understanding tension-induced rupture of biological cell membranes. We performed molecular dynamics simulations of stretched phospholipid/cholesterol bilayers to investigate changes in the free energy profile of water molecules across the bilayer and the lipid structure responsible for water permeation. We modeled stretching of the bilayer by applying areal strain. In stretched phospholipid/cholesterol bilayers, the hydrophobic tail of the phospholipids became disordered and the free energy barrier to water permeation decreased. Upon exceeding the critical areal strain, a phase transition to an interdigitated gel phase occurred before rupture, and the hydrophobic tail ordering as well as the free energy barrier were restored. In pure phospholipid bilayers, we did not observe such recoveries. These transient recoveries in the phospholipid/cholesterol bilayer suppressed water permeation and membrane rupture, followed by an increase in the critical areal strain at which the bilayer ruptured. This result agrees with experimental results and provides a reasonable molecular mechanism for the toughness of phospholipid/cholesterol bilayers under tension.Communicated by Ramaswamy H. Sarma.

13.
J Biomol Struct Dyn ; : 1-17, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424217

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has been the primary reason behind the COVID-19 global pandemic which has affected millions of lives worldwide. The fundamental cause of the infection is the molecular binding of the viral spike protein receptor binding domain (SP-RBD) with the human cell angiotensin-converting enzyme 2 (ACE2) receptor. The infection can be prevented if the binding of RBD-ACE2 is resisted by utilizing certain inhibitors or drugs that demonstrate strong binding affinity towards the SP RBD. Sialic acid based glycans found widely in human cells and tissues have notable propensity of binding to viral proteins of the coronaviridae family. Recent experimental literature have used N-acetyl neuraminic acid (Sialic acid) to create diagnostic sensors for SARS-CoV-2, but a detailed interrogation of the underlying molecular mechanisms is warranted. Here, we perform all atom molecular dynamics (MD) simulations for the complexes of certain Sialic acid-based molecules with that of SP RBD of SARS CoV-2. Our results indicate that Sialic acid not only reproduces a binding affinity comparable to the RBD-ACE2 interactions, it also assumes the longest time to dissociate completely from the protein binding pocket of SP RBD. Our predictions corroborate that a combination of electrostatic and van der Waals energies as well the polar hydrogen bond interactions between the RBD residues and the inhibitors influence free energy of binding.Communicated by Ramaswamy H. Sarma.

14.
Biophys Chem ; 300: 107051, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329644

RESUMO

Amyloidogenicity and toxicity of amyloid peptides have been linked to the peptide aggregation and interactions with lipid bilayers. In this work we used the coarse grained MARTINI model to study the aggregation and partitioning of amyloid peptide fragments Aß(1-28) and Aß(25-35) in the presence of a dipalmitoylphosphatidylcholine bilayer. We explored the peptide aggregation starting from three initial spatial arrangements where free monomers were placed in solution outside the membrane, at the membrane-solution interface, or in the membrane. We found that Aß(1-28) and Aß(25-35) interact with the bilayer quite differently. The Aß(1-28) fragments show strong peptide-peptide and peptide-lipid interactions leading to irreversible aggregation where the aggregates stay confined to their initial spatial location. The Aß(25-35) fragments show weaker peptide-peptide and peptide-lipid interaction leading to reversible aggregation and accumulation at the membrane-solution interface irrespective of their initial spatial arrangement. Those findings can be explained in terms of the shape of the potential of mean force for the single-peptide translocation across the membrane.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Proteínas Amiloidogênicas
15.
Membranes (Basel) ; 13(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37367755

RESUMO

Permeation through biomembranes is ubiquitous for drugs to reach their active sites. Asymmetry of the cell plasma membrane (PM) has been described as having an important role in this process. Here we describe the interaction of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled amphiphiles (NBD-Cn, n = 4 to 16) with lipid bilayers of different compositions (1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol (1:1) and palmitoylated sphingomyelin (SpM):cholesterol (6:4)), including an asymmetric bilayer. Both unrestrained and umbrella sampling (US) simulations (at varying distances to the bilayer center) were carried out. The free energy profile of NBD-Cn at different depths in the membrane was obtained from the US simulations. The behavior of the amphiphiles during the permeation process was described regarding their orientation, chain elongation, and H-bonding to lipid and water molecules. Permeability coefficients were also calculated for the different amphiphiles of the series, using the inhomogeneous solubility-diffusion model (ISDM). Quantitative agreement with values obtained from kinetic modeling of the permeation process could not be obtained. However, for the longer, and more hydrophobic amphiphiles, the variation trend along the homologous series was qualitatively better matched by the ISDM when the equilibrium location of each amphiphile was taken as reference (ΔG = 0), compared to the usual choice of bulk water.

16.
Nanomaterials (Basel) ; 13(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37368287

RESUMO

Food processing and consumption involves multiple contacts between biological fluids and solid materials of processing devices, of which steel is one of the most common. Due to the complexity of these interactions, it is difficult to identify the main control factors in the formation of undesirable deposits on the device surfaces that may affect safety and efficiency of the processes. Mechanistic understanding of biomolecule-metal interactions involving food proteins could improve management of these pertinent industrial processes and consumer safety in the food industry and beyond. In this work, we perform a multiscale study of the formation of protein corona on iron surfaces and nanoparticles in contact with cow milk proteins. By calculating the binding energies of proteins with the substrate, we quantify the adsorption strength and rank proteins by the adsorption affinity. We use a multiscale method involving all-atom and coarse-grained simulations based on generated ab initio three-dimensional structures of milk proteins for this purpose. Finally, using the adsorption energy results, we predict the composition of protein corona on iron curved and flat surfaces via a competitive adsorption model.

17.
Polymers (Basel) ; 15(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242983

RESUMO

Protein adsorption by polymerized surfaces is an interdisciplinary topic that has been approached in many ways, leading to a plethora of theoretical, numerical and experimental insight. There is a wide variety of models trying to accurately capture the essence of adsorption and its effect on the conformations of proteins and polymers. However, atomistic simulations are case-specific and computationally demanding. Here, we explore universal aspects of the dynamics of protein adsorption through a coarse-grained (CG) model, that allows us to explore the effects of various design parameters. To this end, we adopt the hydrophobic-polar (HP) model for proteins, place them uniformly at the upper bound of a CG polymer brush whose multibead-spring chains are tethered to a solid implicit wall. We find that the most crucial factor affecting the adsorption efficiency appears to be the polymer grafting density, while the size of the protein and its hydrophobicity ratio come also into play. We discuss the roles of ligands and attractive tethering surfaces to the primary adsorption as well as secondary and ternary adsorption in the presence of attractive (towards the hydrophilic part of the protein) beads along varying spots of the backbone of the polymer chains. The percentage and rate of adsorption, density profiles and the shapes of the proteins, alongside with the respective potential of mean force are recorded to compare the various scenarios during protein adsorption.

18.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110681

RESUMO

Using a combination of unconstrained and constrained molecular dynamics simulations, we have evaluated the binding affinities between two porphyrin derivatives (TMPyP4 and TEGPy) and the G-quadruplex (G4) of a DNA fragment modeling the insulin-linked polymorphic region (ILPR). Refining a well-established potential of mean force (PMF) approach to selections of constraints based on root-mean-square fluctuations results in an excellent agreement between the calculated and observed absolute free binding energy of TMPyP4. The binding affinity of IPLR-G4 toward TEGPy is predicted to be higher than that toward TMPyP4 by 2.5 kcal/mol, which can be traced back to stabilization provided by the polyether side chains of TMPyP4 that can nestle into the grooves of the quadruplex and form hydrogen bonds through the ether oxygen atoms. Because our refined methodology can be applied to large ligands with high flexibility, the present research opens an avenue for further ligand design in this important area.


Assuntos
Quadruplex G , Porfirinas , Insulina/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Porfirinas/química
19.
J Funct Biomater ; 14(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37103309

RESUMO

It has been confirmed that skeletal muscle cells have the capability to receive foreign plasmid DNA (pDNA) and express functional proteins. This provides a promisingly applicable strategy for safe, convenient, and economical gene therapy. However, intramuscular pDNA delivery efficiency was not high enough for most therapeutic purposes. Some non-viral biomaterials, especially several amphiphilic triblock copolymers, have been shown to significantly improve intramuscular gene delivery efficiency, but the detailed process and mechanism are still not well understood. In this study, the molecular dynamics simulation method was applied to investigate the structure and energy changes of the material molecules, the cell membrane, and the DNA molecules at the atomic and molecular levels. From the results, the interaction process and mechanism of the material molecules with the cell membrane were revealed, and more importantly, the simulation results almost completely matched the previous experimental results. This study may help us design and optimize better intramuscular gene delivery materials for clinical applications.

20.
Membranes (Basel) ; 13(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37103797

RESUMO

The interaction of antimicrobial and amyloid peptides with cell membranes is a critical step in their activities. Peptides of the uperin family obtained from the skin secretion of Australian amphibians demonstrate antimicrobial and amyloidogenic properties. All-atomic molecular dynamics and an umbrella sampling approach were used to study the interaction of uperins with model bacterial membrane. Two stable configurations of peptides were found. In the bound state, the peptides in helical form were located right under the head group region in parallel orientation with respect to the bilayer surface. Stable transmembrane configuration was observed for wild-type uperin and its alanine mutant in both alpha-helical and extended unstructured forms. The potential of mean force characterized the process of peptide binding from water to the lipid bilayer and its insertion into the membrane, and revealed that the transition of uperins from the bound state to the transmembrane position was accompanied by the rotation of peptides and passes through the energy barrier of 4-5 kcal/mol. Uperins have a weak effect on membrane properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA