Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Histopathology ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044682

RESUMO

AIMS: Superficial CD34-positive fibroblastic tumour (SCD34FT) is an uncommon but distinctive low-grade neoplasm of the skin and subcutis that shows frequent CADM3 expression by immunohistochemistry (IHC). In this study, prompted by an index case resembling 'atypical fibrous histiocytoma (FH)' that was positive for CADM3 IHC, we systematically examined a cohort of tumours previously diagnosed as 'atypical FH' by applying CADM3 and fluorescence in situ hybridization (FISH) for PRDM10 rearrangement, to investigate the overlap between these tumour types. METHODS AND RESULTS: Forty cases of atypical FH were retrieved, including CD34-positive tumours (n = 20) and CD34-negative tumours (n = 20). All tumours were stained for CADM3. All CADM3-positive tumours were evaluated by FISH to assess for PRDM10 rearrangement. Eleven CD34-positive tumours (11/20, 55%) coexpressed CADM3 and were reclassified as SCD34FT. None (0/20) of the CD34-negative atypical FH were CADM3-positive. Reclassified SCD34FT (10/11) arose on the lower extremity, with frequent involvement of the thigh (n = 8). Features suggestive of atypical FH were observed in many reclassified cases including variable cellularity, spindled morphology, infiltrative tumour margins, collagen entrapment, epidermal hyperpigmentation, and acanthosis. Variably prominent multinucleate giant cells, including Touton-like forms, were also present. An informative FISH result was obtained in 10/11 reclassified tumours, with 60% (6/10) demonstrating PRDM10 rearrangement. CONCLUSION: A significant subset of tumours that histologically resemble atypical FH, and are positive for CD34, coexpress CADM3 and harbour PRDM10 rearrangement, supporting their reclassification as SCD34FT. Awareness of this morphologic overlap and the application of CADM3 IHC can aid the distinction between SCD34FT and atypical FH.

2.
J Endocrinol Invest ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014173

RESUMO

BACKGROUND: The deubiquitinating enzyme Ubiquitin-specific peptidase 15 (USP15) is upregulated in various cancers and promotes tumor progression by increasing the expression of several oncogenes. This project is designed to explore the role and mechanism of USP15 in thyroid cancer (TC) progression. METHODS: Selenium-binding protein 1 (SELENBP1), USP15, CCL2/5, CXCL10/11, IL-4, and TGF-ß1 mRNA levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR). SELENBP1, USP15, GPX4, IL-10, Arg-1, Granzyme B, TNF-α, and PR domain zinc finger protein 1 (PRDM1) protein levels were examined by western blot assay. Fe+ level, malondialdehyde (MDA), and lipid-ROS levels were determined using special kits. The proportion of CD11b+CD206+ positive cells was detected using a flow cytometry assay. The role of SELENBP1 on TC cell growth was examined using a xenograft tumor model in vivo. After GeneMANIA prediction, the interaction between USP15 and SELENBP1 was verified using Co-immunoprecipitation (CoIP) assay. The binding between PRDM1 and USP15 promoter was predicted by JASPAR and validated using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS: SELENBP1 was increased in TC subjects and cell lines, and its knockdown repressed TC cell proliferation, migration, invasion, immune escape, and induced ferroptosis in vitro, as well as blocked tumor growth in vivo. In mechanism, USP15 interacted with SELENBP1 and maintained its stabilization by removing ubiquitin. Meanwhile, the upregulation of USP15 was induced by the transcription factor PRDM1. CONCLUSION: USP15 transcriptionally mediated by PRDM1 might boost TC cell malignant behaviors through deubiquitinating SELENBP1, providing a promising therapeutic target for TC treatment.

3.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892036

RESUMO

The extracellular matrix is a complex network of proteins and other molecules that are essential for the support, integrity, and structure of cells and tissues within the human body. The genes ZNF469 and PRDM5 each produce extracellular-matrix-related proteins that, when mutated, have been shown to result in the development of brittle cornea syndrome. This dysfunction results from aberrant protein function resulting in extracellular matrix disruption. Our group recently identified and published the first known associations between variants in these genes and aortic/arterial aneurysms and dissection diseases. This paper delineates the proposed effects of mutated ZNF469 and PRDM5 on various essential extracellular matrix components, including various collagens, TGF-B, clusterin, thrombospondin, and HAPLN-1, and reviews our recent reports associating single-nucleotide variants to these genes' development of aneurysmal and dissection diseases.


Assuntos
Matriz Extracelular , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Instabilidade Articular/genética , Instabilidade Articular/congênito , Histona-Lisina N-Metiltransferase/genética , Distrofias Hereditárias da Córnea/genética , Distrofias Hereditárias da Córnea/patologia , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Aneurisma Aórtico/genética , Mutação , Proteínas de Ligação a DNA/genética , Dermatopatias Genéticas/genética , Dermatopatias Genéticas/patologia , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Anormalidades do Olho , Anormalidades da Pele
4.
BMC Cancer ; 24(1): 685, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840106

RESUMO

BACKGROUND: Gastric cancer is one of the most common tumors worldwide, and most patients are deprived of treatment options when diagnosed at advanced stages. PRDM14 has carcinogenic potential in breast and non-small cell lung cancer. however, its role in gastric cancer has not been elucidated. METHODS: We aimed to elucidate the expression of PRDM14 using pan-cancer analysis. We monitored the expression of PRDM14 in cells and patients using quantitative polymerase chain reaction, western blotting, and immunohistochemistry. We observed that cell phenotypes and regulatory genes were influenced by PRDM14 by silencing PRDM14. We evaluated and validated the value of the PRDM14-derived prognostic model. Finally, we predicted the relationship between PRDM14 and small-molecule drug responses using the Connectivity Map and The Genomics of Drug Sensitivity in Cancer databases. RESULTS: PRDM14 was significantly overexpressed in gastric cancer, which identified in cell lines and patients' tissues. Silencing the expression of PRDM14 resulted in apoptosis promotion, cell cycle arrest, and inhibition of the growth and migration of GC cells. Functional analysis revealed that PRDM14 acts in epigenetic regulation and modulates multiple DNA methyltransferases or transcription factors. The PRDM14-derived differentially expressed gene prognostic model was validated to reliably predict the patient prognosis. Nomograms (age, sex, and PRDM14-risk score) were used to quantify the probability of survival. PRDM14 was positively correlated with sensitivity to small-molecule drugs such as TPCA-1, PF-56,227, mirin, and linsitinib. CONCLUSIONS: Collectively, our findings suggest that PRDM14 is a positive regulator of gastric cancer progression. Therefore, it may be a potential therapeutic target for gastric cancer.


Assuntos
Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas , Fatores de Transcrição , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Feminino , Masculino , Nomogramas , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Epigênese Genética
5.
Theranostics ; 14(8): 3317-3338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855188

RESUMO

Metastasis is one of the key factors of treatment failure in late-stage colorectal cancer (CRC). Metastatic CRC frequently develops resistance to chemotherapeutic agents. This study aimed to identify the novel regulators from "hidden" proteins encoded by long noncoding RNAs (lncRNAs) involved in tumor metastasis and chemoresistance. Methods: CRISPR/Cas9 library functional screening was employed to identify the critical suppressor of cancer metastasis in highly invasive CRC models. Western blotting, immunofluorescence staining, invasion, migration, wound healing, WST-1, colony formation, gain- and loss-of-function experiments, in vivo experimental metastasis models, multiplex immunohistochemical staining, immunohistochemistry, qRT-PCR, and RT-PCR were used to assess the functional and clinical significance of FOXP3, PRDM16-DT, HNRNPA2B1, and L-CHEK2. RNA-sequencing, co-immunoprecipitation, qRT-PCR, RT-PCR, RNA affinity purification, RNA immunoprecipitation, MeRIP-quantitative PCR, fluorescence in situ hybridization, chromatin immunoprecipitation and luciferase reporter assay were performed to gain mechanistic insights into the role of PRDM16-DT in cancer metastasis and chemoresistance. An oxaliplatin-resistant CRC cell line was established by in vivo selection. WST-1, colony formation, invasion, migration, Biacore technology, gain- and loss-of-function experiments and an in vivo experimental metastasis model were used to determine the function and mechanism of cimicifugoside H-1 in CRC. Results: The novel protein PRDM16-DT, encoded by LINC00982, was identified as a cancer metastasis and chemoresistance suppressor. The down-regulated level of PRDM16-DT was positively associated with malignant phenotypes and poor prognosis of CRC patients. Transcriptionally regulated by FOXP3, PRDM16-DT directly interacted with HNRNPA2B1 and competitively decreased HNRNPA2B1 binding to exon 9 of CHEK2, resulting in the formation of long CHEK2 (L-CHEK2), subsequently promoting E-cadherin secretion. PRDM16-DT-induced E-cadherin secretion inhibited fibroblast activation, which in turn suppressed CRC metastasis by decreasing MMP9 secretion. Cimicifugoside H-1, a natural compound, can bind to LEU89, HIS91, and LEU92 of FOXP3 and significantly upregulated PRDM16-DT expression to repress CRC metastasis and reverse oxaliplatin resistance. Conclusions: lncRNA LINC00982 can express a new protein PRDM16-DT to function as a novel regulator in cancer metastasis and drug resistance of CRC. Cimicifugoside H-1 can act on the upstream of the PRDM16-DT signaling pathway to alleviate cancer chemoresistance.


Assuntos
Neoplasias Colorretais , Proteínas de Ligação a DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , RNA Longo não Codificante , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Splicing de RNA/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
6.
Dev Biol ; 514: 78-86, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38880275

RESUMO

The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.


Assuntos
Coração , Integrases , Fator 1 de Ligação ao Domínio I Regulador Positivo , Animais , Camundongos , Coração/embriologia , Integrases/metabolismo , Integrases/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos Transgênicos , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas de Introdução de Genes
7.
Animals (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731349

RESUMO

Meiotic recombination is a prevalent process in eukaryotic sexual reproduction organisms that plays key roles in genetic diversity, breed selection, and species evolution. However, the recombination events differ across breeds and even within breeds. In this study, we initially computed large-scale population recombination rates of both sexes using approximately 52 K SNP genotypes in a total of 3279 pigs from four different Chinese and Western breeds. We then constructed a high-resolution historical recombination map using approximately 16 million SNPs from a sample of unrelated individuals. Comparative analysis of porcine recombination events from different breeds and at different resolutions revealed the following observations: Firstly, the 1Mb-scale pig recombination maps of the same sex are moderately conserved among different breeds, with the similarity of recombination events between Western pigs and Chinese indigenous pigs being lower than within their respective groups. Secondly, we identified 3861 recombination hotspots in the genome and observed medium- to high-level correlation between historical recombination rates (0.542~0.683) and estimates of meiotic recombination rates. Third, we observed that recombination hotspots are significantly far from the transcription start sites of pig genes, and the silico-predicted PRDM9 zinc finger domain DNA recognition motif is significantly enriched in the regions of recombination hotspots compared to recombination coldspots, highlighting the potential role of PRDM9 in regulating recombination hotspots in pigs. Our study analyzed the variation patterns of the pig recombination map at broad and fine scales, providing a valuable reference for genomic selection breeding and laying a crucial foundation for further understanding the molecular mechanisms of pig genome recombination.

8.
Proc Natl Acad Sci U S A ; 121(23): e2401973121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38809707

RESUMO

In many mammals, recombination events are concentrated in hotspots directed by a sequence-specific DNA-binding protein named PRDM9. Intriguingly, PRDM9 has been lost several times in vertebrates, and notably among mammals, it has been pseudogenized in the ancestor of canids. In the absence of PRDM9, recombination hotspots tend to occur in promoter-like features such as CpG islands. It has thus been proposed that one role of PRDM9 could be to direct recombination away from PRDM9-independent hotspots. However, the ability of PRDM9 to direct recombination hotspots has been assessed in only a handful of species, and a clear picture of how much recombination occurs outside of PRDM9-directed hotspots in mammals is still lacking. In this study, we derived an estimator of past recombination activity based on signatures of GC-biased gene conversion in substitution patterns. We quantified recombination activity in PRDM9-independent hotspots in 52 species of boreoeutherian mammals. We observe a wide range of recombination rates at these loci: several species (such as mice, humans, some felids, or cetaceans) show a deficit of recombination, while a majority of mammals display a clear peak of recombination. Our results demonstrate that PRDM9-directed and PRDM9-independent hotspots can coexist in mammals and that their coexistence appears to be the rule rather than the exception. Additionally, we show that the location of PRDM9-independent hotspots is relatively more stable than that of PRDM9-directed hotspots, but that PRDM9-independent hotspots nevertheless evolve slowly in concert with DNA hypomethylation.


Assuntos
Histona-Lisina N-Metiltransferase , Recombinação Genética , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Mamíferos/genética , Ilhas de CpG/genética , Eutérios/genética , Camundongos , Feminino , Conversão Gênica , Evolução Molecular
9.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710919

RESUMO

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Fatores de Transcrição , Trofoblastos , Via de Sinalização Wnt , Trofoblastos/metabolismo , Trofoblastos/citologia , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Histonas/metabolismo , Histonas/genética
10.
Cell Mol Life Sci ; 81(1): 201, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691164

RESUMO

Hypertension is a heritable disease that affects one-fourth of the population and accounts for about 50% of cardiovascular deaths. The genetic basis of hypertension is multifaceted, involving both monogenic and most commonly complex polygenic forms. With the advent of the human genome project, genome-wide association studies (GWAS) have identified a plethora of loci linked to hypertension by examining common genetic variations. It's notable, however, that the majority of these genetic variants do not affect the protein-coding sequences, posing a considerable obstacle in pinpointing the actual genes responsible for hypertension. Despite these challenges, precise mapping of GWAS-identified loci is emerging as a promising strategy to reveal novel genes and potential targets for the pharmacological management of blood pressure. This review provides insight into the monogenic and polygenic causes of hypertension. Special attention is given to PRDM6, among the earliest functionally characterized GWAS-identified genes. Moreover, this review delves into the roles of genes contributing to renal and vascular forms of hypertension, offering insights into their genetic and epigenetic mechanisms of action.


Assuntos
Epigênese Genética , Estudo de Associação Genômica Ampla , Hipertensão , Humanos , Hipertensão/genética , Predisposição Genética para Doença , Animais
11.
Acta Pharmacol Sin ; 45(8): 1686-1700, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38589688

RESUMO

Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Hepáticas , Peptidase 7 Específica de Ubiquitina , Regulação para Cima , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Fibrinogênio , Tiofenos
12.
Cancer Biomark ; 40(2): 199-203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38607753

RESUMO

BACKGROUND: Ovarian cancer (OC) is mostly diagnosed in advanced stages with high incidence-to-mortality rate. Nevertheless, some patients achieve long-term disease-free survival. However, the prognostic markers have not been well established. OBJECTIVE: The primary objective of this study was to analyse the association of the suggested prognostic marker rs2185379 in PRDM1 with long-term survival in a large independent cohort of advanced OC patients. METHODS: We genotyped 545 well-characterized advanced OC patients. All patients were tested for OC predisposition. The effect of PRDM1 rs2185379 and other monitored clinicopathological and genetic variables on survival were analysed. RESULTS: The univariate analysis revealed no significant effect of PRDM1 rs2185379 on survival whereas significantly worse prognosis was observed in postmenopausal patients (HR = 2.49; 95%CI 1.90-3.26; p= 4.14 × 10 - 11) with mortality linearly increasing with age (HR = 1.05 per year; 95%CI 1.04-1.07; p= 2 × 10 - 6), in patients diagnosed with non-high-grade serous OC (HR = 0.44; 95%CI 0.32-0.60; p= 1.95 × 10 - 7) and in patients carrying a gBRCA1 pathogenic variant (HR = 0.65; 95%CI 0.48-0.87; p= 4.53 × 10 - 3). The multivariate analysis interrogating the effect of PRDM1 rs2185379 with other significant prognostic factors revealed marginal association of PRDM1 rs2185379 with worse survival in postmenopausal women (HR = 1.54; 95%CI 1.01-2.38; p= 0.046). CONCLUSIONS: Unlike age at diagnosis, OC histology or gBRCA1 status, rs2185379 in PRDM1 is unlikely a marker of long-term survival in patients with advance OC.


Assuntos
Proteína BRCA1 , Biomarcadores Tumorais , Neoplasias Ovarianas , Fator 1 de Ligação ao Domínio I Regulador Positivo , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Biomarcadores Tumorais/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Pessoa de Meia-Idade , Proteína BRCA1/genética , Idoso , Adulto , Polimorfismo de Nucleotídeo Único , Estadiamento de Neoplasias , Genótipo , Idoso de 80 Anos ou mais
13.
BMC Genomics ; 25(1): 344, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580899

RESUMO

BACKGROUND: Genome-wide DNA demethylation occurs in mammalian primordial germ cells (PGCs) as part of the epigenetic reprogramming important for gametogenesis and resetting the epigenetic information for totipotency. Dppa3 (also known as Stella or Pgc7) is highly expressed in mouse PGCs and oocytes and encodes a factor essential for female fertility. It prevents excessive DNA methylation in oocytes and ensures proper gene expression in preimplantation embryos: however, its role in PGCs is largely unexplored. In the present study, we investigated whether or not DPPA3 has an impact on CG methylation/demethylation in mouse PGCs. RESULTS: We show that DPPA3 plays a role in genome-wide demethylation in PGCs even before sex differentiation. Dppa3 knockout female PGCs show aberrant hypermethylation, most predominantly at H3K9me3-marked retrotransposons, which persists up to the fully-grown oocyte stage. DPPA3 works downstream of PRDM14, a master regulator of epigenetic reprogramming in embryonic stem cells and PGCs, and independently of TET1, an enzyme that hydroxylates 5-methylcytosine. CONCLUSIONS: The results suggest that DPPA3 facilitates DNA demethylation through a replication-coupled passive mechanism in PGCs. Our study identifies DPPA3 as a novel epigenetic reprogramming factor in mouse PGCs.


Assuntos
Proteínas Cromossômicas não Histona , Desmetilação do DNA , Epigênese Genética , Animais , Feminino , Camundongos , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA , Genoma , Células Germinativas/metabolismo , Mamíferos/genética
14.
Oxf Open Neurosci ; 3: kvae001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595939

RESUMO

PRDM16 is a dynamic transcriptional regulator of various stem cell niches, including adipocytic, hematopoietic, cardiac progenitors, and neural stem cells. PRDM16 has been suggested to contribute to 1p36 deletion syndrome, one of the most prevalent subtelomeric microdeletion syndromes. We report a patient with a de novo nonsense mutation in the PRDM16 coding sequence, accompanied by lissencephaly and microcephaly features. Human stem cells were genetically modified to mimic this mutation, generating cortical organoids that exhibited altered cell cycle dynamics. RNA sequencing of cortical organoids at day 32 unveiled changes in cell adhesion and WNT-signaling pathways. ChIP-seq of PRDM16 identified binding sites in postmortem human fetal cortex, indicating the conservation of PRDM16 binding to developmental genes in mice and humans, potentially at enhancer sites. A shared motif between PRDM16 and LHX2 was identified and further examined through comparison with LHX2 ChIP-seq data from mice. These results suggested a collaborative partnership between PRDM16 and LHX2 in regulating a common set of genes and pathways in cortical radial glia cells, possibly via their synergistic involvement in cortical development.

15.
Biology (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38666830

RESUMO

The Pacific whiteleg shrimp (Penaeus vannamei) is a highly significant species in shrimp aquaculture. In the production of shrimp larvae, noticeable variations in the reproductive capacity among female individuals have been observed. Some females experience slow gonadal development, resulting in the inability to spawn, while others undergo multiple maturations and contribute to the majority of larval supply. Despite numerous studies that have been conducted on the regulatory mechanisms of ovarian development in shrimp, the factors contributing to the differences in reproductive capacity among females remain unclear. To elucidate the underlying mechanisms, this study examined the differences in the ovarian characteristics between high and low reproductive bulks at different maturity stages, focusing on the cellular and molecular levels. Transmission electron microscopy analysis revealed that the abundance of the endoplasmic reticulum, ribosomes, mitochondria, and mitochondrial cristae in oocytes of high reproductive bulk was significantly higher than that of the low reproductive bulk in the early stages of ovarian maturation (stages I and II). As the ovaries progressed to late-stage maturation (stages III and IV), differences in the internal structures of oocytes between females with different reproductive capacities gradually diminished. Transcriptome analysis identified differentially expressed genes (DEGs) related to the mitochondria between two groups, suggesting that energy production processes might play a crucial role in the observed variations in ovary development. The expression levels of the ETS homology factor (EHF) and PRDI-BF1 and RIZ homology domain containing 9 (PRDM9), which were significantly different between the two groups, were compared using qRT-PCR in individuals at different stages of ovarian maturation. The results showed a significantly higher expression of the EHF gene in the ovaries of high reproductive bulk at the II and IV maturity stages compared to the low reproductive bulk, while almost no expression was detected in the eyestalk tissue of the high reproductive bulk. The PRDM9 gene was exclusively expressed in ovarian tissue, with significantly higher expression in the ovaries of the high reproductive bulk at the four maturity stages compared to the low reproductive bulk. Fluorescence in situ hybridization further compared the expression patterns of EHF and PRDM9 in the ovaries of individuals with different fertility levels, with both genes showing stronger positive signals in the high reproductive bulk at the four ovarian stages. These findings not only contribute to our understanding of the regulatory mechanisms involved in shrimp ovarian development, but also provide valuable insights for the cultivation of new varieties aimed at improving shrimp fecundity.

16.
Arch Iran Med ; 27(4): 223-226, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685849

RESUMO

Hereditary sensory autonomic neuropathy type VIII (HSAN-VIII) is a rare genetic disease that occurs due to mutations in the PRDM12 gene. Here, we describe a novel homozygous mutation c.826_840dupTGCAACCGCCGCTTC (p.Cys276_Phe280dup) on exon 5 in the PRDM12 gene identified by WES and confirmed using Sanger sequencing method.


Assuntos
Proteínas de Transporte , Neuropatias Hereditárias Sensoriais e Autônomas , Homozigoto , Mutação , Feminino , Humanos , Lactente , Proteínas de Ligação a DNA/genética , Éxons , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteínas do Tecido Nervoso/genética , Linhagem , Fatores de Transcrição/genética , Masculino
17.
Biomark Med ; 18(2): 79-91, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38440890

RESUMO

Objective: We aimed to explore the clinical value of MDS1 and EVI1 complex locus (MECOM) in lung adenocarcinoma (LUAD). Methods: Bioinformatics and experimental validation confirmed MECOM expression levels in LUAD. The value of MECOM was analyzed by receiver operating characteristic (ROC) curve and Cox regression analysis. Results: Serum MECOM levels were lower in LUAD and correlated with gender, TNM stage, tumor size, lymph node metastasis and distant metastasis. The ROC curve showed that the area under the curve of MECOM was 0.804 for LUAD and, of note, could reach 0.889 for advanced LUAD; specificity was up to 90%. Conclusion: MECOM may contribute to independently identifying LUAD patients, particularly in advanced stages.


Lung adenocarcinoma is a common type of lung cancer with a high incidence and death rate. However, clinical indicators that effectively identify lung adenocarcinoma patients are still lacking. The protein encoded by the MECOM gene is a DNA-binding protein regulating gene expression, which has been found to play a cancer-promoting role in many cancers, but we found that it may play a cancer-suppressing role in lung adenocarcinoma. This study aimed to confirm whether MECOM can be a predictor for lung adenocarcinoma. Our results showed that lung adenocarcinoma patients had lower serum MECOM levels than healthy people, and patients with lower MECOM levels had a shorter survival rate. That is, patients with lower serum MECOM levels may indicate a high risk of developing lung adenocarcinoma and death. Thus, the MECOM gene is expected to be a predictor associated with the risk of developing lung adenocarcinoma and death.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Prognóstico , Biologia Computacional , Adenocarcinoma de Pulmão/diagnóstico , Metástase Linfática , Fatores de Transcrição/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Proteína do Locus do Complexo MDS1 e EVI1
18.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542214

RESUMO

Our research focuses on expression patterns in human and mouse embryonic cardiomyocytes and endothelial cells at the single-cell level. We analyzed single-cell datasets containing different species, cardiac chambers, and cell types. We identified developmentally dynamic genes associated with different cellular lineages in the heart and explored their expression and possible roles during cardiac development. We used dynamic time warping, a method that aligns temporal sequences, to compare these developmental stages across two species. Our results indicated that atrial cardiomyocytes from E9.5 to E13.5 in mice corresponded to a human embryo age of approximately 5-6 weeks, whereas in ventricular cardiomyocytes, they corresponded to a human embryo age of 13-15 weeks. The endothelial cells in mouse hearts corresponded to 6-7-week-old human embryos. Next, we focused on expression changes in cardiac transcription factors over time in different species and chambers, and found that Prdm16 might be related to interspecies cardiomyocyte differences. Moreover, we compared the developmental trajectories of cardiomyocytes differentiated from human pluripotent stem cells and embryonic cells. This analysis explored the relationship between their respective developments and provided compelling evidence supporting the relevance of our dynamic time-warping results. These significant findings contribute to a deeper understanding of cardiac development across different species.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Humanos , Animais , Camundongos , Lactente , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Átrios do Coração/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Pers Med ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540967

RESUMO

Gastrointestinal (GI) cancers are some of the main public health threats to the world. Even though surgery, chemotherapy, and targeted therapy are available for their treatments, these approaches provide limited success in reducing mortality, making the identification of additional therapeutic targets mandatory. Chromatin remodeling in cancer has long been studied and related therapeutics are widely used, although less is known about factors with prognostic and therapeutic potential in such areas as gastrointestinal cancers. Through applying systematic bioinformatic analysis, we determined that out of 31 chromatin remodeling factors in six gastrointestinal cancers, only PR/SET domain 1 (PRDM1) showed both expression alteration and prognosis prediction. Analyses on pathways, therapies, and mediators showed that cell cycle, bromodomain inhibitor IBET151, and BET protein BRD4 were, respectively involved in PRDM1-high stomach cancer, while cell line experiments validated that PRDM1 knockdown in human stomach cancer cell line SNU-1 decreased its proliferation, BRD4 expression, and responsiveness to IBET151; accordingly, these results indicate the contribution by PRDM1 in stomach cancer formation and its association with BRD4 modulation as well as BET inhibitor treatment.

20.
Birth Defects Res ; 116(3): e2327, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456586

RESUMO

BACKGROUND: Split hand/foot malformation (SHFM) is a congenital limb disorder presenting with limb anomalies, such as missing, hypoplastic, or fused digits, and often craniofacial defects, including a cleft lip/palate, microdontia, micrognathia, or maxillary hypoplasia. We previously identified three novel variants in the transcription factor, PRDM1, that are associated with SHFM phenotypes. One individual also presented with a high arch palate. Studies in vertebrates indicate that PRDM1 is important for development of the skull; however, prior to our study, human variants in PRDM1 had not been associated with craniofacial anomalies. METHODS: Using transient mRNA overexpression assays in prdm1a-/- mutant zebrafish, we tested whether the PRDM1 SHFM variants were functional and could lead to a rescue of the craniofacial defects observed in prdm1a-/- mutants. We also mined previously published CUT&RUN and RNA-seq datasets that sorted EGFP-positive cells from a Tg(Mmu:Prx1-EGFP) transgenic line that labels the pectoral fin, pharyngeal arches, and dorsal part of the head to examine Prdm1a binding and the effect of Prdm1a loss on craniofacial genes. RESULTS: The prdm1a-/- mutants exhibit craniofacial defects including a hypoplastic neurocranium, a loss of posterior ceratobranchial arches, a shorter palatoquadrate, and an inverted ceratohyal. Injection of wildtype (WT) hPRDM1 in prdm1a-/- mutants partially rescues the palatoquadrate phenotype. However, injection of each of the three SHFM variants fails to rescue this skeletal defect. Loss of prdm1a leads to a decreased expression of important craniofacial genes by RNA-seq, including emilin3a, confirmed by hybridization chain reaction expression. Other genes including dlx5a/dlx6a, hand2, sox9b, col2a1a, and hoxb genes are also reduced. Validation by real-time quantitative PCR in the anterior half of zebrafish embryos failed to confirm the expression changes suggesting that the differences are enriched in prx1 expressing cells. CONCLUSION: These data suggest that the three SHFM variants are likely not functional and may be associated with the craniofacial defects observed in the humans. Finally, they demonstrate how Prdm1a can directly bind and regulate genes involved in craniofacial development.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Crânio , Síndrome , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA