RESUMO
What an animal ingests and what it digests can be different. Thus, we examined the nutritional physiology of Lumpenus sagitta, a member of the family Stichaeidae, to better understand whether it could digest algal components like its better studied algivorous relatives. Although L. sagitta ingests considerable algal content, we found little evidence of algal digestion. This fish species has a short gut that doesn't show positive allometry with body size, low amylolytic activity that actually decreases as the fish grow, no ontogenetic changes in digestive enzyme gene expression, elevated N-acetyl-glucosaminidase activity (indicative of chitin breakdown), and an enteric microbial community that is consistent with carnivory and differs from members of its family that consume and digest algae. Hence, we are left concluding that L. sagitta is not capable of digesting the algae it consumes, and instead, are likely targeting epibionts on the algae itself, and other invertebrates consumed with the algae. Our study expands the coverage of dietary and digestive information for the family Stichaeidae, which is becoming a model for fish digestive physiology and genomics, and shows the power of moving beyond gut content analyses to better understand what an animal can actually digest and use metabolically.
Assuntos
Carnivoridade , Perciformes , Animais , Dieta , Fenômenos Fisiológicos do Sistema Digestório , Tamanho CorporalRESUMO
Beyond a few obvious examples (e.g., gut length, amylase activity), digestive and metabolic specializations towards diet remain elusive in fishes. Thus, we compared gut length, δ13C and δ15N signatures of the liver, and expressed genes in the intestine and liver of wild-caught individuals of four closely-related, sympatric prickleback species (family Stichaeidae) with different diets: Xiphister mucosus (herbivore), its sister taxon X. atropurpureus (omnivore), Phytichthys chirus (omnivore) and the carnivorous Anoplarchus purpurescens. We also measured the same parameters after feeding them carnivore or omnivore diets in the laboratory for 4 weeks. Growth and isotopic signatures showed assimilation of the laboratory diets, and gut length was significantly longer in X. mucosus in comparison to the other fishes, whether in the wild, or in the lab consuming the different diets. Dozens of genes relating to digestion and metabolism were observed to be under selection in the various species, but P. chirus stood out with some genes in the liver showing strong positive selection, and these genes correlating with differing isotopic incorporation of the laboratory carnivore diet in this species. Although the intestine showed variation in the expression of hundreds of genes in response to the laboratory diets, the liver exhibited species-specific gene expression patterns that changed very little (generally <40 genes changing expression, with P. chirus providing an exception). Overall, our results suggest that the intestine is plastic in function, but the liver may be where specialization manifests since this tissue shows species-specific gene expression patterns that match with natural diet.