Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Angew Chem Int Ed Engl ; 63(33): e202406389, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38801753

RESUMO

The recently identified natural product NOSO-95A from entomopathogenic Xenorhabdus bacteria, derived from a biosynthetic gene cluster (BGC) encoding a non-ribosomal peptide synthetase (NRPS), was the first member of the odilorhabdin class of antibiotics. This class exhibits broad-spectrum antibiotic activity and inspired the development of the synthetic derivative NOSO-502, which holds potential as a new clinical drug by breaking antibiotic resistance. While the mode of action of odilorhabdins was broadly investigated, their biosynthesis pathway remained poorly understood. Here we describe the heterologous production of NOSO-95A in Escherichia coli after refactoring the complete BGC. Since the production titer was low, NRPS engineering was applied to uncover the underlying biosynthetic principles. For this, modules of the odilorhabdin NRPS fused to other synthetases were co-expressed with candidate hydroxylases encoded in the BGC allowing the characterization of the biosynthesis of three unusual amino acids and leading to the identification of a prodrug-activation mechanism by deacylation. Our work demonstrates the application of NRPS engineering as a blueprint to mechanistically elucidate large or toxic NRPS and provides the basis to generate novel odilorhabdin analogues with improved properties in the future.


Assuntos
Família Multigênica , Peptídeo Sintases , Xenorhabdus , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Xenorhabdus/genética , Xenorhabdus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 296-304, 2024 Feb 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38755726

RESUMO

Traditional antibody drug conjugates (ADC) combine monoclonal antibodies with cytotoxic drugs to accurately strike cancer cells, but there are still many shortcomings in stability, targeting, efficacy, and safety. Novel ADC, such as bi-specific, site-specific, dual-payload, and pro-drug type ADC, can be optimized by simultaneously binding 2 different antigens or epitopes, selecting more stable linkers, coupling with specific amino acid sites of antibodies, carrying different drug payloads, and adopting prodrug strategies, while retaining the characteristics of traditional ADC. Significantly improving the stability, targeting, efficacy and safety of drugs can better meet the needs of clinical treatment. Novel ADC will play a more important role in cancer treatment in the future. Discussing the progress of novel ADC in cancer treatment and analyzing their advantages and challenges can provide theoretical support for the development of anti-cancer strategies and provide directions for drug research and development.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Imunoconjugados/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Pró-Fármacos/uso terapêutico
3.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581700

RESUMO

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Oxazolidinonas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Antituberculosos/farmacologia , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Animais , Testes de Sensibilidade Microbiana , Camundongos , Humanos , Linezolida/farmacologia , Linezolida/química , Farmacorresistência Bacteriana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
4.
Biomolecules ; 14(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397391

RESUMO

Pro-drugs, which ideally release their active compound only at the site of action, i.e., in a cancer cell, are a promising approach towards an increased specificity and hence reduced side effects in chemotherapy. A popular form of pro-drugs is esters, which are activated upon their hydrolysis. Since carboxylesterases that catalyse such a hydrolysis reaction are also abundant in normal tissue, it is of great interest whether a putative pro-drug is a probable substrate of such an enzyme and hence bears the danger of being activated not just in the target environment, i.e., in cancer cells. In this work, we study the binding mode of carboxylesters of the drug molecule camptothecin, which is an inhibitor of topoisomerase I, of varying size to human carboxylesterase 2 (HCE2) by molecular docking and molecular dynamics simulations. A comparison to irinotecan, known to be a substrate of HCE2, shows that all three pro-drugs analysed in this work can bind to the HCE2 protein, but not in a pose that is well suited for subsequent hydrolysis. Our data suggest, moreover, that for the irinotecan substrate, a reactant-competent pose is stabilised once the initial proton transfer from the putative nucleophile Ser202 to the His431 of the catalytic triad has already occurred. Our simulation work also shows that it is important to go beyond the static models obtained from molecular docking and include the flexibility of enzyme-ligand complexes in solvents and at a finite temperature. Under such conditions, the pro-drugs studied in this work are unlikely to be hydrolysed by the HCE2 enzyme, indicating a low risk of undesired drug release in normal tissue.


Assuntos
Camptotecina , Carboxilesterase , Irinotecano , Pró-Fármacos , Humanos , Camptotecina/química , Carboxilesterase/química , Irinotecano/química , Simulação de Acoplamento Molecular , Pró-Fármacos/química , Ligação Proteica
5.
Biochem Pharmacol ; 218: 115910, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37972875

RESUMO

Butyrylcholinesterase (BChE) is present in plasma and numerous cells and organs. Its physiological function(s) is(are) still unclear. However, this enzyme is of pharmacological and toxicological importance. It displays a broad specificity and is capable of hydrolyzing a wide range of substrates with turnovers differing by several orders of magnitude. Nowaday, these substrates include more than two dozen carboxyl-ester drugs, numerous acetylated prodrugs, and transition state analogues of acetylcholine. In addition, BChE displays a promiscuous hydrolytic activity toward amide bonds of arylacylamides, and slowly hydrolyzes carbamyl- and phosphoryl-esters. Certain pseudo-substrates like carbamates and organophosphates are major drugs of potential medical interest. The existence of a large genetic poly-allelism, affecting the catalytic properties of BChE is at the origin of clinical complications in the use of certain drugs catabolized by BChE. The number of drugs and prodrugs hydrolyzed by BChE is expected to increase in the future. However, very few quantitative data (Km, kcat) are available for most marketed drugs, and except for myorelaxants like succinylcholine and mivacurium, the impact of BChE genetic mutations on catalytic parameters has not been evaluated for most of these drugs.


Assuntos
Butirilcolinesterase , Pró-Fármacos , Humanos , Butirilcolinesterase/genética , Succinilcolina/farmacologia , Hidrólise , Mutação
7.
Acta Pharm Sin B ; 13(2): 879-896, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873187

RESUMO

Immunotherapy combined with effective therapeutics such as chemotherapy and photodynamic therapy have been shown to be a successful strategy to activate anti-tumor immune responses for improved anticancer treatment. However, developing multifunctional biodegradable, biocompatible, low-toxic but highly efficient, and clinically available transformed nano-immunostimulants remains a challenge and is in great demand. Herein, we report and design of a novel carrier-free photo-chemotherapeutic nano-prodrug COS-BA/Ce6 NPs by combining three multifunctional components-a self-assembled natural small molecule betulinic acid (BA), a water-soluble chitosan oligosaccharide (COS), and a low toxic photosensitizer chlorin e6 (Ce6)-to augment the antitumor efficacy of the immune adjuvant anti-PD-L1-mediated cancer immunotherapy. We show that the designed nanodrugs harbored a smart and distinctive "dormancy" characteristic in chemotherapeutic effect with desired lower cytotoxicity, and multiple favorable therapeutic features including improved 1O2 generation induced by the reduced energy gap of Ce6, pH-responsiveness, good biodegradability, and biocompatibility, ensuring a highly efficient, synergistic photochemotherapy. Moreover, when combined with anti-PD-L1 therapy, both nano-coassembly based chemotherapy and chemotherapy/photodynamic therapy (PDT) could effectively activate antitumor immunity when treating primary or distant tumors, opening up potentially attractive possibilities for clinical immunotherapy.

8.
J Microencapsul ; 40(4): 246-262, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880479

RESUMO

The aims of this study were to develop co-delivery systems of paclitaxel (PTX) and etoposide prodrug (4'-O-benzyloxycarbonyl-etoposide, ETP-cbz) based on non-cross-linked human serum albumin (HSA) and poly(lactide-co-glycolide) nanoparticles and to evaluate the synergistic potential of these drugs in vitro. The nanoformulations were prepared by the high-pressure homogenisation technique and characterised using DLS, TEM, SEM, AFM, HPLC, CZE, in-vitro release, and cytotoxicity in human and murine glioma cells. All nanoparticles had 90-150 nm in size and negative ζ-potentials. The Neuro2A cells were the most sensitive to both HSA- and PLGA-based co-delivery systems (IC50 0.024 µM and 0.053 µM, respectively). The drugs' synergistic effect (combination index < 0.9) was observed in the GL261 cells for both types of co-delivery formulations and in the Neuro2A cells for the HSA-based system. These nanodelivery systems may be useful to improve combination chemotherapy for brain tumour treatment. To our knowledge, this is the first report describing the non-cross-linked HSA-based co-delivery nanosuspension which was prepared using nab™ technology.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Pró-Fármacos , Humanos , Camundongos , Animais , Paclitaxel/farmacologia , Etoposídeo/farmacologia , Pró-Fármacos/farmacologia , Albumina Sérica Humana , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
9.
Pharmacol Res ; 187: 106628, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566002

RESUMO

Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with a poor prognosis and limited effective therapeutic options. Induction of senescence, arrest of cell proliferation, has been explored as an effective method to limit tumor progression in metastatic breast cancer. However, relapses occur in some patients, possibly as a result of the accumulation of senescent tumor cells in the body after treatment, which promote metastasis. In this study, we explored the combination of senescence induction and the subsequent removal of senescent cells (senolysis) as an alternative approach to improve outcomes in TNBC patients. We demonstrate that a combination treatment, using the senescence-inducer palbociclib and the senolytic agent navitoclax, delays tumor growth and reduces metastases in a mouse xenograft model of aggressive human TNBC (hTNBC). Furthermore, considering the off-target effects and toxicity derived from the use of navitoclax, we propose a strategy aimed at minimizing the associated side effects. We use a galacto-conjugated navitoclax (nav-Gal) as a senolytic prodrug that can preferentially be activated by ß-galactosidase overexpressed in senescent cells. Concomitant treatment with palbociclib and nav-Gal in vivo results in the eradication of senescent hTNBC cells with consequent reduction of tumor growth, while reducing the cytotoxicity of navitoclax. Taken together, our results support the efficacy of combination therapy of senescence-induction with senolysis for hTNBC, as well as the development of a targeted approach as an effective and safer therapeutic opportunity.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Senoterapia , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Linhagem Celular Tumoral
10.
Biomolecules ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551224

RESUMO

A heterogenous Palladium anchored Resorcinol-formaldehyde-hyperbranched PEI mesoporous catalyst, made by one-pot synthesis, was used successfully for in situ Suzuki-Miyaura cross coupling synthesis of anticancer prodrug PP-121 from iodoprazole and boronic ester precursors. The mesoporous catalyst with the non-cytotoxic precursors were tested in 2D in vitro model with excellent cytocompatibility and a strong suppression of PC3 cancer cell proliferation, underscored by 50% reduction in PC3 cells viability and 55% reduction in cell metabolism activity and an enhanced rate of early and late apoptosis in flow cytometry, that was induced only by successful in situ pro drug PP121 synthesis from the precursors. The 3D gelatin methacrylate hydrogel encapsulated in vitro cell models underscored the results with a 52% reduction in cell metabolism and underscored apoptosis of PC3 cells when the Pd anchored catalyst was combined with the precursors. In situ application of Suzuki-Miyaura cross coupling of non-cytotoxic precursors to cancer drug, along with their successful encapsulation in an injectable hydrogel could be applied for tumor point drug delivery strategies that can circumvent deleterious side effects and poor bioavailability chemotherapy routes with concomitant enhanced efficacy.


Assuntos
Hidrogéis , Paládio , Hidrogéis/farmacologia , Catálise , Paládio/farmacologia
11.
J Pharmacol Sci ; 150(3): 163-172, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36184121

RESUMO

Tolvaptan is an orally active vasopressin V2 receptor antagonist and used for the treatment of volume overload in some disease as an aquaretic. Tolvaptan sodium phosphate (OPC-61815) is a pro-drug of tolvaptan that was designed to improve water solubility and enable intravenous use. The conversion of OPC-61815 to tolvaptan was evaluated for in vitro and in vivo pharmacokinetic studies. The pharmacodynamics of OPC-61815 were evaluated for in vitro receptor binding affinity, in vivo aquaretic and anti-edematous action. The solubility of OPC-61815 in water at 25 °C was 72.4 mg/mL and more than 100,000 times the solubility of tolvaptan. OPC-61815 was hydrolyzed to tolvaptan by human tissue S9 fractions and main enzyme of hydrolysis was alkaline phosphatase. After intravenous administration of OPC-61815 to rats and dogs, tolvaptan was detected in plasma within 5 min and the bioavailability of tolvaptan was 57.7% and 50.9%, respectively. Binding affinity of OPC-61815 for the human V2 receptor was 1/14 weaker than that of tolvaptan. OPC-61815 exerted dose-dependent aquaretic action in rats and dogs and a corresponding anti-edematous action in rat edema models. These results suggest that OPC-61815, a water-soluble phosphate ester pro-drug of tolvaptan, is an effective aquaretic by converting to tolvaptan after intravenous administration.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Pró-Fármacos , Fosfatase Alcalina , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Antagonistas dos Receptores de Hormônios Antidiuréticos/uso terapêutico , Benzazepinas/farmacologia , Cães , Ésteres , Humanos , Fosfatos , Pró-Fármacos/farmacologia , Ratos , Sódio , Tolvaptan , Água/metabolismo
12.
J Inorg Biochem ; 237: 111988, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108343

RESUMO

Efficient uptake to both cytoplasm and nucleus in live cells remains a key obstacle for G-quadruplex targeting fluorophores. We developed a Pt(IV) complex by oxidizing a bisphenanthrolinyl Pt(II) complex, which is our first generation G-quadruplex specific fluorogenic probe.15 The axial lipophilic ligand assists Pt(IV) pro-probe to enter live cells and reach the nucleus rapidly. In situ reduction of Pt(IV) pro-probe restores parental Pt(II) complex, and sequentially lights up both RNA and DNA G-quadruplexes in live cancerous cells simultaneously. Pt(IV) pro-probe shows potent cytotoxicity after long time incubation as a dual-functional theranostic agent.


Assuntos
Quadruplex G , Neoplasias , Humanos , Corantes Fluorescentes/farmacologia , Ligantes , Oxirredução , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
13.
ACS Nano ; 16(7): 10242-10259, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35820199

RESUMO

The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.


Assuntos
Nanopartículas , Neoplasias , Animais , Humanos , Biogênese de Organelas , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
14.
MAbs ; 14(1): 2095701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799328

RESUMO

Although monoclonal antibodies have greatly improved cancer therapy, they can trigger side effects due to on-target, off-tumor toxicity. Over the past decade, strategies have emerged to successfully mask the antigen-binding site of antibodies, such that they are only activated at the relevant site, for example, after proteolytic cleavage. However, the methods for designing an ideal affinity-based mask and what parameters are important are not yet well understood. Here, we undertook mechanistic studies using three masks with different properties and identified four critical factors: binding site and affinity, as well as association and dissociation rate constants, which also played an important role. HDX-MS was used to identify the location of binding sites on the antibody, which were subsequently validated by obtaining a high-resolution crystal structure for one of the mask-antibody complexes. These findings will inform future designs of optimal affinity-based masks for antibodies and other therapeutic proteins.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/química , Afinidade de Anticorpos , Sítios de Ligação
15.
Antibiotics (Basel) ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35326782

RESUMO

As bioactive small proteins with antimicrobial and immunomodulatory activities that are naturally produced by all living organisms, antimicrobial peptides (AMPs) have a marked potential as next-generation antibiotics. However, their development as antibacterial agents is limited by low stability and cytotoxicity. D-BMAP18, a membrane-permeabilizing antimicrobial peptide composed of D-amino acids, has shown good antibacterial and anti-inflammatory activities but also a non-negligible cytotoxicity against eukaryotic cell lines. In this study, a prodrug has been developed that extends the peptide with a negatively charged, inactivating sequence containing the cleavage site for neutrophil elastase (NE). The ultimate goal was to allow the activation of D-BMAP18 by endogenous elastase only at the site of infection/inflammation, enabling a slow and targeted release of the pharmacologically active peptide. In vitro activation of Pro-D-BMAP18 was confirmed using purified NE. Its antimicrobial and cytotoxic activities were tested in the presence and absence of elastase and compared to those of the parental form. The prodrug had minimal activity in the absence of elastase, while its proteolysis product retained an appreciable antimicrobial activity but lower cytotoxicity. Moreover, Pro-D-BMAP18 was found to be correctly converted to D-BMAP18 in the presence of CF sputum as a model of the lung environment and showed good antimicrobial activity under these conditions.

16.
Asian J Pharm Sci ; 17(1): 35-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35261643

RESUMO

Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless, the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides, gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.

17.
Theranostics ; 12(3): 1132-1147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154478

RESUMO

Rationale: Employing in situ bioorthogonal catalysis within subcellular organelles, such as lysosomes, remains a challenge. Lysosomal membranes pose an intracellular barrier for drug sequestration, thereby greatly limiting drug accumulation and concentrations at intended targets. Here, we provide a proof-of-concept report of a nanozyme-based strategy that mediates in situ bioorthogonal uncaging reactions within lysosomes, followed by lysosomal escape and the release of uncaged drugs into the cytoplasm. Methods: A model system composed of a protein-based nanozyme platform (based on the transition metals Co, Fe, Mn, Rh, Ir, Pt, Au, Ru and Pd) and caged compound fluorophores was designed to screen for nanozyme/protecting group pairings. The optimized nanozyme/protecting group pairing was then selected for utilization in the design of anti-cancer pro-drugs and drug delivery systems. Results: Our screening system identified Pd nanozymes that mimic mutant P450BM3 activity and specifically cleave propargylic ether groups. We found that the intrinsic peroxidase-like activity of Pd nanozymes induced the production of free radicals under acid conditions, resulting in lysosomal membrane leakage of uncaged molecules into the cytoplasm. Using a multienzyme synergistic approach, our Pd nanozymes achieved in situ bioorthogonal catalysis and nanozyme-mediated lysosomal membrane leakage, which were successfully applied to the design of model pro-drugs for anti-cancer therapy. The extension of our nanozyme system to the construction of a liposome-based "all-in-one" delivery system offers promise for realizing efficacious in vivo tumor-targeted therapies. Conclusions: This strategy shows a promising new direction by utilizing nanotechnology for drug development through in situ catalyzing bioorthogonal chemistry within specific subcellular organelles.


Assuntos
Neoplasias , Pró-Fármacos , Catálise , Humanos , Lisossomos
18.
Nat Prod Res ; 36(21): 5455-5461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34965811

RESUMO

Three components of L-ascorbic acid, amino acid and functionalized norcantharidins were constructed together in several steps to form 42 norcantharidin derivatives in a high yield. The structure of these synthesized l-ascorbic acid-amino acid-norcantharidin conjugates are determined by 1HNMR, 13CNMR and MS spectrum. The results showed that compounds 6e, 6g, 6j, 6l, 6m, 6b, 6e, 6i, and 6n showed high cytotoxicity to HepG2 and compounds 6b, 6e-g, 6l, 6n, 7b, 7d, 7h, 7i, 7n, 8g, 8i exhibited high cytotoxicity to SW480; Meanwhile, besides 6b, 6e, 6g, and 6k, the other compounds showed less toxic to LO2 at a concentration of 50 µg/mg after 72 h. Compound 6g can induce Mφ-type macrophages derived from mouse bone marrow to polarize to M1-type macrophages.


Assuntos
Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes , Camundongos , Animais , Relação Estrutura-Atividade , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ácido Ascórbico/farmacologia , Estrutura Molecular
19.
Enzyme Microb Technol ; 150: 109889, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489042

RESUMO

Hybrid nanoparticles composed of different biopolymers for delivery of enzyme/prodrug systems are of interest for cancer therapy. Hyaluronic acid-coated chitosan nanoparticles (CS/HA NP) were prepared to encapsulate individually an enzyme/pro-drug complex based on horseradish peroxidase (HRP) and indole-3-acetic acid (IAA). CS/HA NP showed size around 158 nm and increase to 170 and 200 nm after IAA and HRP encapsulation, respectively. Nanoparticles showed positive zeta potential values (between +20.36 mV and +24.40 mV) and higher encapsulation efficiencies for both nanoparticles (up to 90 %) were obtained. Electron microscopy indicated the formation of spherical particles with smooth surface characteristic. Physicochemical and thermal characterizations suggest the encapsulation of HRP and IAA. Kinetic parameters for encapsulated HRP were similar to those of the free enzyme. IAA-CS/HA NP showed a bimodal release profile of IAA with a high initial release (72 %) followed by a slow-release pattern. The combination of HRP-CS/HA NP and IAA- CS/HA NP reduced by 88 % the cell viability of human bladder carcinoma cell line (T24) in the concentrations 0.5 mM of pro-drug and 1.2 µg/mL of the enzyme after 24 h.


Assuntos
Quitosana , Nanopartículas , Pró-Fármacos , Neoplasias da Bexiga Urinária , Peroxidase do Rábano Silvestre , Humanos , Ácido Hialurônico , Ácidos Indolacéticos
20.
Eur J Med Chem ; 224: 113736, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384944

RESUMO

Pyrazolopyrimidinones are fused nitrogen-containing heterocyclic systems, which act as a core scaffold in many pharmaceutically relevant compounds. Pyrazolopyrimidinones have been demonstrated to be efficient in treating several diseases, including cystic fibrosis, obesity, viral infection and cancer. In this study using glioblastoma U-251MG cell line, we tested the cytotoxic effects of 15 pyrazolopyrimidinones, synthesised via a two-step process, in combination with cold atmospheric plasma (CAP). CAP is an adjustable source of reactive oxygen and nitrogen species as well as other unique chemical and physical effects which has been successfully tested as an innovative cancer therapy in clinical trials. Significantly variable cytotoxicity was observed with IC50 values ranging from around 11 µM to negligible toxicity among tested compounds. Interestingly, two pyrazolopyrimidinones were identified that act in a prodrug fashion and display around 5-15 times enhanced reactive-species dependent cytotoxicity when combined with cold atmospheric plasma. Activation was evident for direct CAP treatment on U-251MG cells loaded with the pyrazolopyrimidinone and indirect CAP treatment of the pyrazolopyrimidinone in media before adding to cells. Our results demonstrated the potential of CAP combined with pyrazolopyrimidinones as a programmable cytotoxic therapy and provide screened scaffolds that can be used for further development of pyrazolopyrimidinone prodrug derivatives.


Assuntos
Antineoplásicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Gases em Plasma/metabolismo , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Pirazóis/farmacologia , Piridinas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA