Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Nat Prod Res ; : 1-5, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420624

RESUMO

Solanum violaceum Ortega is a perennial tropical shrub traditionally used as conventional medicine for the treatment of various ailments. The present study aims to validate the use of S. violaceum Ortega leaf (SVLE) and fruit extracts (SVFE) in traditional medicine through untargeted metabolomics and assessment of its biological and phytochemical properties. GC-MS-based untargeted metabolomics identified derivatives of 59 and 50 metabolites in SVLE and SVFE, respectively. The study authenticated the presence of several bioactive compounds including Diosgenin, n-Hexadecanoic acid and Stigmasterol in SVLE and Ricinoleic acid, 9,12-Octadecadienoic acid and Oleic acid in SVFE, thus corroborating the use of the plant in traditional medicine as an anti-inflammatory and antioxidant agent. Both SVFE and SVLE demonstrated potent antioxidant, protease and anticoagulant properties with partial inhibitory effects on the physiological function of Factor Xa. This study provides insight into the phytochemical and pharmacological properties of S. violaceum and its potential ethnomedicinal relevance.

2.
World J Microbiol Biotechnol ; 40(11): 340, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358625

RESUMO

Extracellular proteases from haloarchaea, also referred to as halolysins, are in increasing demand and are studied for their various applications in condiments and leather industries. In this study, an extracellular protease encoding gene from the haloarchaeon Halorubellus sp. PRR65, hly65, was cloned and heterologously expressed in E. coli. The novel halolysin Hly65 from the genus Halorubellus was characterized by complete inhibition of phenylmethanesulfonyl fluoride (PMSF) on its enzyme activity. Experimental determination revealed a triad catalytic active center consisting of Asp154-His193-Ser348. Deletion of the C-terminal extension (CTE) resulted in loss of enzyme activity, while dithiothreitol (DTT) did not inhibit the enzyme activity, suggesting that Hly65 may function as a monomer. The Km, Vmax and Kcat for the Hly65 were determined to be 2.91 mM, 1230.47 U·mg-1 and 1538.09 S-1, respectively, under 60 °C, pH 8.0 and 4.0 M NaCl using azocasecin as a substrate. Furthermore, a three-dimensional structure prediction based on functional domains was obtained in this study which will facilitate modification and reorganization of halolysins to generate mutants with new physiological activities.


Assuntos
Proteínas Arqueais , Clonagem Molecular , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/química , Caseínas , Domínio Catalítico , Estabilidade Enzimática , Escherichia coli/genética , Halobacteriaceae/genética , Halobacteriaceae/enzimologia , Halobacteriaceae/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Fluoreto de Fenilmetilsulfonil/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Cloreto de Sódio/metabolismo , Especificidade por Substrato , Temperatura
3.
Viruses ; 16(10)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39459895

RESUMO

Bacteria of the Pseudomonas genus, including the Pseudomonas gessardii subgroup, play an important role in the environmental microbial communities. Psychrotolerant isolates of P. gessardii can produce thermostable proteases and lipases. When contaminating refrigerated raw milk, these bacteria spoil it by producing enzymes resistant to pasteurization. One possible way to prevent spoilage of raw milk is to use Pseudomonas lytic phages specific to undesirable P. gessardii isolates. The first phage, Pseudomonas vB_PseuGesM_254, was isolated and characterized, which is active against several proteolytic P. gessardii strains. This lytic myophage can infect and lyse its host strain at 24 °C and at low temperature (8 °C); so, it has the potential to prevent contamination of raw milk. The vB_PseuGesM_254 genome, 95,072 bp, shows a low level of intergenomic similarity with the genomes of known phages. Comparative proteomic ViPTree analysis indicated that vB_PseuGesM_254 is associated with a large group of Pseudomonas phages that are members of the Skurskavirinae and Gorskivirinae subfamilies and the Nankokuvirus genus. The alignment constructed using ViPTree shows that the vB_PseuGesM_254 genome has a large inversion between ~53,100 and ~70,700 bp, which is possibly a distinctive feature of a new taxonomic unit within this large group of Pseudomonas phages.


Assuntos
Genoma Viral , Leite , Fagos de Pseudomonas , Pseudomonas , Pseudomonas/virologia , Fagos de Pseudomonas/genética , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/classificação , Leite/microbiologia , Leite/virologia , Filogenia , Animais , Proteômica , Especificidade de Hospedeiro , Proteólise , Myoviridae/genética , Myoviridae/isolamento & purificação , Myoviridae/classificação , Myoviridae/fisiologia
4.
Front Vet Sci ; 11: 1410113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301284

RESUMO

The pathogenic nature of bacteria can be increased by cleaving antimicrobial peptides using omptins, to avoid or counter the host's natural immune defenses. Plasmid-encoded OmpT (pOmpT or ArlC) in avian pathogenic Escherichia coli (APEC), like the chromosome-encoded OmpT (cOmpT), belongs to the omptin family and both exhibit highly similar sequences and structures. Through sequence alignment and physiological examinations, pOmpT has been identified as a virulence factor, distinct from cOmpT in terms of substrate specificity. When pOmpT is compared with cOmpT regarding their proteolytic activities and target substrates, Asp267 and Ser276 on loop 5 of cOmpT are found to be binding sites that facilitate substrate anchoring and enhance substrate cleavage (protamine or synthetic peptide) by the catalytic center. Conversely, the characteristics of residues at positions 267 and 276 on loop 5 of pOmpT inhibit protamine cleavage, yet allow the specific cleavage of the human antimicrobial peptide RNase 7, which plays a role in host defense. This finding suggests a relationship between these two binding sites and substrate specificity. Furthermore, the substrate-binding sites (residues 267 and 276, particularly residue 267) of cOmpT and pOmpT are determined to be critical in the virulence of APEC. In summary, residues 267 and 276 of pOmpT are crucial for the pathogenicity of APEC and offer new insights into the determinants of APEC virulence and the development of antimicrobial drugs.

5.
Front Vet Sci ; 11: 1428156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39176399

RESUMO

Antibiotics, often hailed as 'miracle drugs' in the 20th century, have revolutionised medicine by saving millions of lives in human and veterinary medicine, effectively combatting bacterial infections. However, the escalating global challenge of antimicrobial resistance and the appearance and spread of multidrug-resistant pathogens necessitates research into alternatives. One such alternative could be lactoferrin. Lactoferrin, an iron-binding multifunctional protein, is abundantly present in mammalian secretions and exhibits antimicrobial and immunomodulatory activities. An often overlooked aspect of lactoferrin is its proteolytic activity, which could contribute to its antibacterial activity. The proteolytic activity of lactoferrin has been linked to the degradation of virulence factors from several bacterial pathogens, impeding their colonisation and potentially limiting their pathogenicity. Despite numerous studies, the exact proteolytically active site of lactoferrin, the specific bacterial virulence factors it degrades and the underlying mechanism remain incompletely understood. This review gives an overview of the current knowledge concerning the proteolytic activity of lactoferrins and summarises the bacterial virulence factors degraded by lactoferrins. We further detail how a deeper understanding of the proteolytic activity of lactoferrin might position it as a viable alternative for antibiotics, being crucial to halt the spread of multi-drug resistant bacteria.

6.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202970

RESUMO

BACKGROUND: Metastatic melanoma stands out as the most lethal form of skin cancer because of its high propensity to spread and its remarkable resistance to treatment methods. METHODS: In this review article, we address the incidence of melanoma worldwide and its staging phases. We thoroughly investigate the different melanomas and their associated risk factors. In addition, we underscore the principal therapeutic goals and pharmacological methods that are currently used in the treatment of melanoma. RESULTS: The implementation of targeted therapies has contributed to improving the approach to patients. However, because of the emergence of resistance early in treatment, overall survival and progression-free periods continue to be limited. CONCLUSIONS: We provide new insights into plant serine protease inhibitor therapeutics, supporting high-throughput drug screening soon, and seeking a complementary approach to explain crucial mechanisms associated with melanoma.


Assuntos
Melanoma Maligno Cutâneo , Melanoma , Inibidores de Serina Proteinase , Neoplasias Cutâneas , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Humanos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Inibidores de Serina Proteinase/uso terapêutico , Inibidores de Serina Proteinase/farmacologia , Inibidores de Serina Proteinase/química , Biotecnologia/métodos
7.
Pak J Biol Sci ; 27(7): 356-364, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39206469

RESUMO

<b>Background and Objective:</b> The existence of intensive shrimp aquaculture faces serious challenges in the form of a decrease in pond water quality due to overfeeding. Efforts are needed to improve pond water quality by utilizing proteolytic bacterial isolates to break down suspended or accumulated feed on the pond bottom. The research aims to find proteolytic bacterial isolates from pond sediments and the digestive tract of shrimp (<i>Litopenaeus vannamei</i>). <b>Materials and Methods:</b> The materials needed are pond sediment samples, shrimp digestive tract, seawater complete agar (SWCA) medium and skim milk agar medium (SMA). The study used survey methods to determine sampling locations and continued with experimental methods in the laboratory. Nine isolates were obtained from pond sediments and two bacterial isolates were from the shrimp digestive tract. <b>Results:</b> The proteolytic potency test showed that two isolates from pond sediments and one isolate from the digestive tract of shrimp were positive for proteolytic. The largest proteolytic index value reached 6.357. Molecular identification by analyzing the <i>16S rRNA</i> gene sequence shows that PC23 isolate is closely related to the bacterium <i>Exiguobacterium indicum </i>strain KR6 with percent identity 99.44-99.58% and PU32 isolate with <i>Bacillus cereus</i> strain 125 with percent identity 100%. <b>Conclusion:</b> The bacteria obtained can be used as probiotic candidates for the future are <i>Exiguobacterium indicum</i> strain KR6 and <i>Bacillus cereus</i> strain 125.


Assuntos
Aquicultura , Lagoas , Probióticos , Animais , Lagoas/microbiologia , Indonésia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Penaeidae/microbiologia , RNA Ribossômico 16S/genética , Proteólise
8.
Int Microbiol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129036

RESUMO

A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.

9.
Gut Microbes ; 16(1): 2387857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171684

RESUMO

Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.


Assuntos
Colite , Proteólise , Receptor PAR-2 , Animais , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Colite/microbiologia , Colite/patologia , Colite/metabolismo , Camundongos , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Inflamação/microbiologia , Enterococcus/genética , Enterococcus/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Modelos Animais de Doenças , Humanos , Domínios Proteicos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia
10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39000451

RESUMO

The nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral structural protein that is abundant in the circulation of infected individuals. Previous published studies reported controversial data about the role of the N protein in the activation of the complement system. It was suggested that the N protein directly interacts with mannose-binding lectin-associated serine protease-2 (MASP-2) and stimulates lectin pathway overactivation/activity. In order to check these data and to reveal the mechanism of activation, we examined the effect of the N protein on lectin pathway activation. We found that the N protein does not bind to MASP-2 and MASP-1 and it does not stimulate lectin pathway activity in normal human serum. Furthermore, the N protein does not facilitate the activation of zymogen MASP-2, which is MASP-1 dependent. Moreover, the N protein does not boost the enzymatic activity of MASP-2 either on synthetic or on protein substrates. In some of our experiments, we observed that MASP-2 digests the N protein. However, it is questionable, whether this activity is biologically relevant. Although surface-bound N protein did not activate the lectin pathway, it did trigger the alternative pathway in 10% human serum. Additionally, we detected some classical pathway activation by the N protein. Nevertheless, we demonstrated that this activation was induced by the bound nucleic acid, rather than by the N protein itself.


Assuntos
Lectina de Ligação a Manose da Via do Complemento , Proteínas do Nucleocapsídeo de Coronavírus , Serina Proteases Associadas a Proteína de Ligação a Manose , SARS-CoV-2 , Humanos , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , SARS-CoV-2/metabolismo , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/metabolismo , COVID-19/imunologia , Fosfoproteínas/metabolismo , Ligação Proteica , Ativação do Complemento
11.
J Sci Food Agric ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39077990

RESUMO

Papain a protease enzyme naturally present in the Carica papaya has gained significant interest across several industries due to its unique properties and versatility. The unique structure of papain imparts the functionality that assists in elucidating how papain enzyme works and making it beneficial for a variety of purposes. This review highlights recent advancements in papain extraction techniques to enhance production efficiency to meet market demand. The extraction of papain from the Carica papaya plant offers various advantages such as cost-effectiveness, biodegradability, safety, and the ability to withstand a wide range of pH and temperature conditions. Key findings reveal that non-conventional papain extraction techniques offer significant advantages in terms of efficiency, product quality, and environmental sustainability. Furthermore, papain treatment enhances the value of final products due to its anti-bacterial, anti-oxidant, and anti-obesity properties. The ability of papain to hydrolyze a wide range of proteins across various conditions makes it a suitable protease enzyme. While the study emphasizes the advantages of papain, the study also acknowledges limitations such as the continuous research and development to optimize extraction processes which will help unlock papain's potential and meet the growing demand. © 2024 Society of Chemical Industry.

12.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928451

RESUMO

Phytaspases differ from other members of the plant subtilisin-like protease family by having rare aspartate cleavage specificity and unusual localization dynamics. Phytaspases are secreted from healthy plant cells but are re-internalized upon perception of death-inducing stresses. Although proteolytic activity is required for the secretion of plant subtilases, its requirement for the retrograde transportation of phytaspases is currently unknown. To address this issue, we employed an approach to complement in trans the externalization of a prodomain-less form of Nicotiana tabacum phytaspase (NtPhyt) with the free prodomain in Nicotiana benthamiana leaf cells. Using this approach, the generation of the proteolytically active NtPhyt and its transport to the extracellular space at a level comparable to that of the native NtPhyt (synthesized as a canonical prodomain-containing precursor protein) were achieved. The application of this methodology to NtPhyt with a mutated catalytic Ser537 residue resulted in the secretion of the inactive, although processed (prodomain-free), protein as well. Notably, the externalized NtPhyt Ser537Ala mutant was still capable of retrograde transportation into plant cells upon the induction of oxidative stress. Our data thus indicate that the proteolytic activity of NtPhyt is dispensable for stress-induced retrograde transport of the enzyme.


Assuntos
Nicotiana , Proteínas de Plantas , Proteólise , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Oxidativo , Estresse Fisiológico , Subtilisinas/metabolismo , Subtilisinas/genética , Folhas de Planta/metabolismo , Transporte Proteico
13.
Plants (Basel) ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931128

RESUMO

Plants utilize the ubiquitin proteasome system (UPS) to orchestrate numerous essential cellular processes, including the rapid responses required to cope with abiotic and biotic stresses. The 26S proteasome serves as the central catalytic component of the UPS that allows for the proteolytic degradation of ubiquitin-conjugated proteins in a highly specific manner. Despite the increasing number of studies employing cell-free degradation assays to dissect the pathways and target substrates of the UPS, the precise extraction methods of highly potent tissues remain unexplored. Here, we utilize a fluorogenic reporting assay using two extraction methods to survey proteasomal activity in different Arabidopsis thaliana tissues. This study provides new insights into the enrichment of activity and varied presence of proteasomes in specific plant tissues.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38919002

RESUMO

BACKGROUND: Ganoderma spp. are a great source of bioactive molecules. The production and recovery of bioactive molecules vary according to strain, growth substrate, and extraction solution. Variations in protease and their inhibitors in basidiomata from a commercial strain (G. lingzhi) and an Amazonian isolate (Ganoderma sp.) cultivated in Amazonian lignocellulosic wastes and extracted with different solutions are plausible and were investigated in our study. METHODS: Basidiomata from cultivation in substrates based on açaí seed, guaruba-cedro sawdust and three lots of marupá sawdust were submitted to extraction in water, Tris-HCl, and sodium phosphate. Protein content, proteases, and protease inhibitors were estimated through different assays. The samples were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). RESULTS: Tris-HCl provided higher protein extraction from Ganoderma sp. and higher caseinolytic, gelatinolytic, and fibrinolytic activity for G. lingzhi cultivated in açaí. Water extracts of Ganoderma sp., in general, exhibited higher trypsin and papain inhibitor activities compared to G. lingzhi. Extracts in Tris-HCl and sodium phosphate showed more intense protein bands in SDS-- PAGE, highlighting bands of molecular weights around 100, 50, and 30 kDa. FTIR spectra showed patterns for proteins in all extracts, with variation in transmittance according to substrate and extractor. CONCLUSION: Water extract from Amazonian Ganoderma sp. cultivated in marupá wastes are promising as a source of protease inhibitors, while the Tris-HCL extract of G. lingzhi from açaí cultivation stands out as a source of proteases with fibrinolytic, caseinolytic, and gelatinolytic activities.

15.
Toxicon ; 247: 107835, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942240

RESUMO

Serine peptidases and metallopeptidases are the primary toxins found in Bothrops snakes venoms, which act on proteins in the tissues of victims or prey, and release of peptides formed through proteolytic activity. Various studies have indicated that these peptides, released by the proteolytic activity of heterologous enzymes, generate molecules with unidentified functions, referred to as cryptids. To address this, we purified serine peptidases from Bothrops jararaca venom using molecular exclusion chromatography and then incubated them with the endogenous substrate myoglobin. As a control, we also incubated the substrate with trypsin. The resulting proteolytic fragments were analyzed, separated, and collected via HPLC. These fractions were then tested on cell cultures, the active fractions were sequenced (ALELFR and TGHPETLEK) and synthesized. After confirming their activity, the peptides underwent sequencing and synthesis for additional cell tests, including the increase of cell viability, cycle phases, proliferation, signaling, growth kinetics, angiogenesis, and migration. The results revealed that the synthesized peptides exhibited cellular repair properties, suggesting a potential role in tissue repair in the range of 0.05-5 µ M. Additionally, the effects of fragments resulting from myoglobin degradation isolated (ALELFR and TGHPETLEK) revealed a regenerative action on tissue.


Assuntos
Bothrops , Venenos de Crotalídeos , Mioglobina , Serina Proteases , Animais , Venenos de Crotalídeos/química , Serina Proteases/metabolismo , Serina Proteases/química , Mioglobina/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Bothrops jararaca
16.
Protein Pept Lett ; 31(4): 305-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644721

RESUMO

BACKGROUND: Protease 3C (3Cpro) is the only protease encoded in the human hepatitis A virus genome and is considered as a potential target for antiviral drugs due to its critical role in the viral life cycle. Additionally, 3Cpro has been identified as a potent inducer of ferroptosis, a newly described type of cell death. Therefore, studying the molecular mechanism of 3Cpro functioning can provide new insights into viral-host interaction and the biological role of ferroptosis. However, such studies require a reliable technique for producing the functionally active recombinant enzyme. OBJECTIVE: Here, we expressed different modified forms of 3Cpro with a hexahistidine tag on the N- or C-terminus to investigate the applicability of immobilized metal Ion affinity chromatography (IMAC) for producing 3Cpro. METHODS: We expressed the proteins in Escherichia coli and purified them using IMAC, followed by gel permeation chromatography. The enzymatic activity of the produced proteins was assayed using a specific chromogenic substrate. RESULTS: Our findings showed that the introduction and position of the hexahistidine tag did not affect the activity of the enzyme. However, the yield of the target protein was highest for the variant with seven C-terminal residues replaced by a hexahistidine sequence. CONCLUSION: We demonstrated the applicability of our approach for producing recombinant, enzymatically active 3Cpro.


Assuntos
Proteases Virais 3C , Cromatografia de Afinidade , Escherichia coli , Histidina , Oligopeptídeos , Histidina/genética , Histidina/metabolismo , Histidina/química , Proteases Virais 3C/química , Proteases Virais 3C/metabolismo , Humanos , Oligopeptídeos/genética , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese , Vírus da Hepatite A Humana/genética , Vírus da Hepatite A Humana/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Expressão Gênica
17.
Protein J ; 43(3): 487-502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38453735

RESUMO

The present study aims at understanding the effect of organic solvents on the specific proteolytic activity and operational stability of asclepain cI in aqueous-organic media, using correlations between geometrical and structural parameters of asclepain cI. These correlations were determined by molecular dynamics (MD) simulations and the secondary structure of the enzyme validated by Fourier-transform Infrared (FTIR) spectroscopy. Asclepain cI exhibited significantly higher catalytic potential in 29 of the 42 aqueous-organic media tested, composed by 0.1 mM TRIS hydrochloride buffer pH 8 (TCB) and an organic solvent, than in buffer alone. Asclepain cI in water-organic miscible systems showed high FTIR spectral similarity with that obtained in TCB, while in immiscible systems the enzyme acquired different secondary structures than in buffer. Among the conditions studied, asclepain cI showed the highest catalytic potential in 50% v/v ethyl acetate in TCB. According to MD simulations, that medium elicited solvation and flexibility changes around the active center of asclepain cI and conducted to a new secondary structure with the active center preserved. These results provide valuable insights into the elucidation of the molecular mechanism of asclepain cI tolerance to organic solvents and pave the way for its future application for the synthesis of peptides in aqueous-organic media.


Assuntos
Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Solventes , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Estabilidade Enzimática
18.
Methods Protoc ; 7(2)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38525783

RESUMO

The proteolytic activity of enzymes may be evaluated by a colorimetric method with azocasein. Hence, we developed a micro-assay to quantify bromelain using azocasein. A total of 250 µL of 1.0% azocasein in dH2O was added to 250 µL of test solution, vortexed and incubated at ambient room temperature/30 min. The reaction was terminated with 1500 µL of 5% trichloroacetic acid, vortexed and centrifuged. A total of 150 µL of 0.5M NaOH was added to 150 µL of supernatant in triplicates, and absorbance was recorded at 410 nm. The linearity of the calibration curve was tested with 200-800 µg/mL serial dilutions. The detection limit, precision, accuracy, and robustness were tested along with the substrate enzyme reaction time and solvent matrix effect. Good linearity was seen with serially diluted 200 µg/mL bromelain. The limit of quantification and limit of detection were 5.412 and 16.4 µg/mL, respectively. Intra-day and inter-day analyses showed a relative standard deviation below 2.0%. The assay was robust when tested over 400-450 nm wavelengths. The assays performed using dH2O or PBS diluents indicated a higher sensitivity in dH2O. The proteolytic activity of bromelain was enhanced with L-cysteine or N-acetylcysteine. Hence, this micro-azocasein assay is reliable for quantifying bromelain.

19.
Foods ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38472904

RESUMO

Papain-like cysteine proteases are widespread and can be detected in all domains of life. They share structural and enzymatic properties with the group's namesake member, papain. They show a broad range of protein substrates and are involved in several biological processes. These proteases are widely exploited for food, pharmaceutical, chemical and cosmetic biotechnological applications. However, some of them are known to cause allergic reactions. In this context, the objective of this review is to report an overview of some general properties of papain-like cysteine proteases and to highlight their contributions to allergy reactions observed in humans. For instance, the literature shows that their proteolytic activity can cause an increase in tissue permeability, which favours the crossing of allergens through the skin, intestinal and respiratory barriers. The observation that allergy to PLCPs is mostly detected for inhaled proteins is in line with the reports describing mite homologs, such as Der p 1 and Der f 1, as major allergens showing a frequent correlation between sensitisation and clinical allergic reactions. In contrast, the plant food homologs are often digested in the gastrointestinal tract. Therefore, they only rarely can cause allergic reactions in humans. Accordingly, they are reported mainly as a cause of occupational diseases.

20.
Foods ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397610

RESUMO

Ripened sheep sausages are widely consumed in Italy, particularly in Sardinia. Despite their driving role in flavor and color development, coagulase-negative staphylococci in these products have been rarely investigated. A total of 70 CoNS cultures isolated from Sardinian sheep sausages were characterized by rep-PCR and M13-RAPD typing and identified by 16S rDNA sequencing. S. xylosus and S. equorum accounted for more than 70% of the total isolates, whilst S. pasteuri (8.5%), S. succinus (2.8%), and S. haemolyticus (2.8%) were less represented. The genes encoding the synthesis of putrescine, tyramine, cadaverine, and histamine were evaluated by PCR. None of the strains hosted genes for decarboxylases, except one S. pasteuri strain that was potentially a tyramine-producer. Antibiotic resistance was evaluated, along with nitrate reductase, lipolytic, and proteolytic activity, in a pool of selected cultures. Resistance to the primary antibiotics was rather widespread. S. xylosus, S. equorum, and S. pasteuri strains were all resistant to amoxicillin and kanamycin. S. equorum strains were sensitive to all tested antibiotics. S. xylosus strains were all resistant to penicillin B. Conversely, all S. pasteuri strains were resistant to both ampicillin and penicillin B, and four out of five strains exhibited tetracycline resistance. The high variability in the production of sheep sausages makes the search for adjunct cultures of crucial relevance. According to this perspective, the characterization of the autochthonous CSN population represents the first step to approach a starter selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA