Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Harmful Algae ; 135: 102649, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38830714

RESUMO

Protoceratium reticulatum is the main yessotoxin-producer along the Chilean coast. Thus far, the yessotoxin levels recorded in this region have not posed a serious threat to human health. However, a bloom of P. reticulatum during the austral summer of 2022 caused the first ban of shellfish collection, due to the high toxin levels. A bloom of P. reticulatum during the austral summer of 2020 allowed an evaluation of the fine-scale distribution of the dinoflagellate during a tidal cycle. High-resolution measurements of biophysical properties were carried out in mid-summer (February 18-19) at a fixed sampling station in Puyuhuapi Fjord, Chilean Patagonia, as part of an intensive 24-h biophysical experiment to monitor the circadian distributions of P. reticulatum vegetative cells and yessotoxins. High P. reticulatum cell densities (>20 × 103 cells L-1) were found in association with a warmer (14.5-15 °C) and estuarine (23.5-24.5 g kg-1) sub-surface water layer (6-8 m). P. reticulatum cell numbers and yessotoxins followed a synchronic distribution pattern consistent with the excursions of the pycnocline. Nevertheless, the surface aggregation of the cells was modulated by the light cycle, suggesting daily vertical migration. The yessotoxin content per P. reticulatum cell ranged from 9.4 to 52.2 pg. This study demonstrates both the value of fine-scale resolution measurements of biophysical properties in a highly stratified system and the potential ecosystem impact of P. reticulatum strains producing high levels of yessotoxins.


Assuntos
Dinoflagellida , Venenos de Moluscos , Oxocinas , Dinoflagellida/fisiologia , Oxocinas/análise , Chile , Estuários , Luz , Proliferação Nociva de Algas , Toxinas Marinhas/análise
2.
Mar Pollut Bull ; 199: 116022, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211543

RESUMO

The effects of yessotoxins (YTXs) produced by the dinoflagellate Protoceratium reticulatum in the early stages of bivalves have not been studied in detail. The present study evaluates the effects of P. reticulatum and YTXs on the survival and feed ingestion of veliger larvae of Argopecten purpuratus. Larvae were 96 h-exposed to 500, 1000 and 2000 P. reticulatum cells mL-1, and their equivalent YTX extract was prepared in methanol. Results show a survival mean of 82 % at the highest density of dinoflagellate, and 38 % for larvae with the highest amount of YTX extract. Feed ingestion is reduced in the dinoflagellate exposure treatments as a function of cell density. Therefore, the effect of YTXs on A. purpuratus represents a new and important area of study for investigations into the deleterious effects of these toxins in the early stages of the life cycle of this and, potentially, other bivalves.


Assuntos
Bivalves , Dinoflagellida , Venenos de Moluscos , Oxocinas , Pectinidae , Animais , Toxinas Marinhas/metabolismo , Larva , Dinoflagellida/metabolismo , Ingestão de Alimentos
3.
Toxins (Basel) ; 15(3)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36977080

RESUMO

The more frequent occurrence of marine harmful algal blooms (HABs) and recent problems with newly-described toxins in Puget Sound have increased the risk for illness and have negatively impacted sustainable access to shellfish in Washington State. Marine toxins that affect safe shellfish harvest because of their impact on human health are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP), diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP) and the recent measurement of azaspiracids, known to cause azaspiracid poisoning (AZP), at low concentrations in Puget Sound shellfish. The flagellate, Heterosigma akashiwo, impacts the health and harvestability of aquacultured and wild salmon in Puget Sound. The more recently described flagellates that cause the illness or death of cultivated and wild shellfish, include Protoceratium reticulatum, known to produce yessotoxins, Akashiwo sanguinea and Phaeocystis globosa. This increased incidence of HABs, especially dinoflagellate HABs that are expected in increase with enhanced stratification linked to climate change, has necessitated the partnership of state regulatory programs with SoundToxins, the research, monitoring and early warning program for HABs in Puget Sound, that allows shellfish growers, Native tribes, environmental learning centers and citizens, to be the "eyes on the coast". This partnership enables safe harvest of wholesome seafood for consumption in the region and helps to describe unusual events that impact the health of oceans, wildlife and humans.


Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Fitoplâncton , Washington , Frutos do Mar/análise , Intoxicação por Frutos do Mar/epidemiologia , Intoxicação por Frutos do Mar/etiologia , Alimentos Marinhos/análise , Proliferação Nociva de Algas
4.
J Eukaryot Microbiol ; 69(4): e12920, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491969

RESUMO

The Gonyaulacales includes some of the most intensely investigated genera of harmful dinoflagellates. The knowledge of the evolutionary relationships is necessary, but incomplete because genera such as Schuettiella have not been studied by contemporary methods. The morphology and molecular phylogeny of type species of the genus Schuettiella, S. mitra, have been investigated from Brazil. The first scanning electron micrographs reveal a distinctive thecal ornamentation with sunken stripes and rows with exclamation mark-shaped pores in the postcingular plates. The Kofoidean plate formula Po, 2', 1a, 6″ is re-interpreted as Po, 3', 1a, 5″, after considering the narrow mid-ventral plate as homologous to the first apical plate, although it does not reach the apex. In the rRNA gene phylogenies, the sequences of S. mitra clustered as an independent lineage closely related to the globular and planktonic Protoceratiaceae (Ceratocorys, Pentaplacodinium, Protoceratium) and the laterally compressed benthic genus Carinadinium (formerly Thecadinium). Schuettiella and Carinadinium are considered members of the Protoceratiaceae. The possession of a single anterior intercalary plate is an apomorphic trait of this family. This reinforces the value of the number of intercalary plates as a diagnostic character for the classification of the gonyaulacalean families despite the differences in the general appearance.


Assuntos
Dinoflagellida , Brasil , Dinoflagellida/genética , Humanos , Filogenia
5.
Eur J Protistol ; 81: 125835, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34715455

RESUMO

Thecadinium is a morphologically heterogenous marine benthic genus. Its polyphyly has been discussed. After redefinition of the sensu stricto genus, sensu lato taxa now need reclassification. Heterotrophic, morphologically closely related species were studied in detail. Molecular phylogenetic data for three of the four known species (T. ornatum, T. acanthium, T. ovatum) and new morphological data were obtained, leading to an emended thecal plate pattern, including the presence of an apical pore complex and an additional hypothecal plate. The results confirm the close relationship of the species and justify the description of Carinadinium gen. nov., characterized by the tabulation APC 3/4' 1/0a 6″ 6c 5s 5‴ 2'‴, an epithecal plate of special morphology, an apical flange, a ventral pore, antapical appendages, a descending cingulum and lateral cell flattening. The genus can be separated into two sub-clades, one with a third precingular 'dimple'-plate, four apical and no anterior intercalary plates and the other with a 'multi-pimple'-plate as third precingular or its homolog plate, three apical and one anterior intercalary plate. Carinadinium is phylogenetically related to the planktonic genera Protoceratium, Pentaplacodinium, and Ceratocorys (family Protoceratiaceae), and clearly belongs into the order Gonyaulacales, but with uncertain family affiliation.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Filogenia , Plâncton
6.
Harmful Algae ; 105: 102032, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34303512

RESUMO

Summer bivalve shellfish mortalities have been observed in Puget Sound for nearly a century and attempts to understand and mitigate these losses have been only partially successful. Likewise, the understanding of the environmental conditions triggering shellfish mortalities and successful strategies for their mitigation are incomplete. In the literature, phytoplankton have played only a cursory role in summer shellfish mortalities in Washington State because spawning stress and bacteria were thought to be the primary causes. In recent years, the occurrence of Protoceratium reticulatum (Claparede & Lachmann) Buetschli and Akashiwo sanguinea (Hirasaka) Hansen & Moestrup, have been documented by the SoundToxins research and monitoring partnership in increasing numbers and duration and have been associated with declining shellfish health or mortality at various sites in Puget Sound. Blooms of these species occur primarily in summer months and have been shown to cause mass mortalities of shellfish in the U.S. and other parts of the world. In 2016-2017, yessotoxins (YTX) were measured in several species of Puget Sound bivalve shellfish, with a maximum concentration of 2.20 mg/kg in blue mussels, a value below the regulatory limit of 3.75 mg/kg established by the European Union for human health protection but documented to cause shellfish mortalities in other locations around the world. In July 2019, a bloom of P. reticulatum coincided with a summer shellfish mortality event, involving a dramatic surfacing of stressed, gaping Manila clams, suggesting that YTX could be the cause. YTX concentrations in their tissues were measured at a maximum of 0.28 mg/kg and histology of these clams demonstrated damage to digestive glands. A culture of P. reticulatum, isolated from North Bay during this massive bloom and shellfish mortality event, showed YTX reaching 26.6 pg/cell, the highest recorded toxin quota measured in the U.S. to date. Concentrations of YTX in phytoplankton samples reached a maximum of 920 ng/L during a P. reticulatum bloom in Mystery Bay on 13 August 2019 when cell abundance reached 1.82 million cells/L. The highest cellular YTX quota during that bloom that lasted into September was 10.8 pg/cell on 3 Sept 2019. Shellfish producers in Washington State have also noted shellfish larvae mortalities due to A. sanguinea passing through filtration intake systems into hatchery facilities. Early warning of shellfish-killing harmful algal bloom (HAB) presence in Puget Sound, through partnerships such as SoundToxins, provides options for shellfish growers to mitigate their effects through early harvest, movement of shellstock to upland facilities, or enhanced filtration at aquaculture facilities.


Assuntos
Toxinas Marinhas , Fitoplâncton , Cromatografia Líquida , Humanos , Toxinas Marinhas/análise , Frutos do Mar/análise , Washington
7.
Harmful Algae ; 87: 101629, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31349886

RESUMO

Cefas has been responsible for the delivery of official control biotoxin testing of bivalve molluscs from Great Britain for just over a decade. Liquid chromatography tandem mass spectrometric (LC-MS/MS) methodology has been used for the quantitation of lipophilic toxins (LTs) since 2011. The temporal and spatial distribution of okadaic acid group toxins and profiles in bivalves between 2011 and 2016 have been recently reported. Here we present data on the two other groups of regulated lipophilic toxins, azaspiracids (AZAs) and yessotoxins (YTXs), over the same period. The latter group has also been investigated for a potential link with Protoceratium reticulatum and Lingulodinium polyedra, both previously recognised as YTXs producing phytoplankton. On average, AZAs were quantified in 3.2% of all tested samples but notable inter-annual variation in abundance was observed. The majority of all AZA contaminated samples were found between July 2011 and August 2013 in Scotland, while only two, three-month long, AZA events were observed in 2015 and 2016 in the south-west of England. Maximum concentrations were generally reached in late summer or early autumn. Reasons for AZAs persistence during the 2011/2012 and 2012/2013 winters are discussed. Only one toxin profile was identified, represented by both AZA1 and AZA2 toxins at an approximate ratio of 2 : 1, suggesting a single microalgal species was the source of AZAs in British bivalves. Although AZA1 was always the most dominant toxin, its proportion varied between mussels, Pacific oysters and surf clams. The YTXs were the least represented group among regulated LTs. YTXs were found almost exclusively on the south-west coast of Scotland, with the exception of 2013, when the majority of contaminated samples originated from the Shetland Islands. The highest levels were recorded in the summer months and followed a spike in Protoceratium reticulatum cell densities. YTX was the most dominant toxin in shellfish, further strengthening the link to P. reticulatum as the YTX source. Neither homo-YTX, nor 45-OH homo-YTX were detected throughout the monitored period. 45-OH YTX, thought to be a shellfish metabolite associated with YTX elimination, contributed on average 26% in mussels. Although the correlation between 45-OH YTX abundance and the speed of YTX depuration could not be confirmed, we noted the half-life of YTX was more than two-times longer in queen scallops, which contained 100% YTX, than in mussels. No other bivalve species were affected by YTXs. This is the first detailed evaluation of AZAs and YTXs occurrences and their profiles in shellfish from Great Britain over a period of multiple years.


Assuntos
Bivalves , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Inglaterra , Toxinas Marinhas , Venenos de Moluscos , Oxocinas , Escócia , Compostos de Espiro , Reino Unido
8.
Toxins (Basel) ; 11(1)2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621266

RESUMO

Here, we present the interannual distribution of Dinophysis acuminata and Protoceratium reticulatum over a 10-year period in the Reloncaví Fjord, a highly stratified fjord in southern Chile. A realized subniche approach based on the Within Outlying Mean Index (WitOMI) was used to decompose the species' realized niche into realized subniches (found within subsets of environmental conditions). The interannual distribution of both D. acuminata and P. reticulatum summer blooms was strongly influenced by climatological regional events, i.e., El Niño Southern Oscillation (ENSO) and the Southern Annual Mode (SAM). The two species showed distinct niche preferences, with blooms of D. acuminata occurring under La Niña conditions (cold years) and low river streamflow whereas P. reticulatum blooms were observed in years of El Niño conditions and positive SAM phase. The biological constraint exerted on the species was further estimated based on the difference between the existing fundamental subniche and the realized subniche. The observed patterns suggested that D. acuminata was subject to strong biological constraint during the studied period, probably as a result of low cell densities of its putative prey (the mixotrophic ciliate Mesodinium cf. rubrum) usually observed in the studied area.


Assuntos
Dinoflagellida/isolamento & purificação , Estuários , Monitoramento Biológico , Chile , Proliferação Nociva de Algas , Estações do Ano
9.
Harmful Algae ; 78: 9-17, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30196929

RESUMO

The marine dinoflagellate Lingulodinium polyedra is a toxigenic species capable of forming high magnitude and occasionally harmful algal blooms (HABs), particularly in temperate coastal waters throughout the world. Three cultured isolates of L. polyedra from a fjord system on the Skagerrak coast of Sweden were analyzed for their growth characteristics and to determine the effects of a strong salinity gradient on toxin cell quotas and composition. The cell quota of yessotoxin (YTX) analogs, as determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), ranged widely among strains. For two strains, the total toxin content remained constant over time in culture, but for the third strain, the YTX cell quota significantly decreased (by 32%) during stationary growth phase. The toxin profiles of the three strains differed markedly and none produced YTX. The analog 41a-homo-YTX (m/z 1155), its putative methylated derivative 9-Me-41a-homo-YTX (m/z 1169) and an unspecified keto-YTX (m/z 1047) were detected in strain LP29-10H, whereas strain LP30-7B contained nor-YTX (m/z 1101), and two unspecified YTX analogs at m/z 1159 and m/z 1061. The toxin profile of strain LP30-8D comprised two unspecified YTX analogs at m/z 1061 and m/z 991 and carboxy-YTX (m/z 1173). Strain LP30-7B cultured at multiple salinities (10, 16, 22, 28 and 34) did not tolerate the lowest salinity (10), but there was a statistically significant decrease (by 21%) in toxin cell quota between growth at the highest versus lower permissible salinities. The toxin profile for strain LP30-7B remained constant over time for a given salinity. At lower salinities, however, the proportion of the unspecified YTX analog (m/z 1061) was significantly higher, especially with respect to nor-YTX (m/z 1101). This study shows high intra-specific variability in yessotoxin composition among strains from the same geographical region and inconsistency in toxin cell quota under different environmental regimes and growth stages in culture. This variation has important implications for the kinetics of YTX production and food web transfer in natural bloom populations from diverse geographical regions.


Assuntos
Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Toxinas Marinhas/análise , Oxocinas/análise , Salinidade , Água do Mar/química , Cromatografia Líquida , Estuários , Venenos de Moluscos , Suécia , Espectrometria de Massas em Tandem
10.
Harmful Algae ; 71: 57-77, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29306397

RESUMO

Strains of a dinoflagellate from the Salton Sea, previously identified as Protoceratium reticulatum and yessotoxin producing, have been reexamined morphologically and genetically and Pentaplacodinium saltonense n. gen. et sp. is erected to accommodate this species. Pentaplacodinium saltonense differs from Protoceratium reticulatum (Claparède et Lachmann 1859) Bütschli 1885 in the number of precingular plates (five vs. six), cingular displacement (two widths vs. one), and distinct cyst morphology. Incubation experiments (excystment and encystment) show that the resting cyst of Pentaplacodinium saltonense is morphologically most similar to the cyst-defined species Operculodinium israelianum (Rossignol, 1962) Wall (1967) and O. psilatum Wall (1967). Collections of comparative material from around the globe (including Protoceratium reticulatum and the genus Ceratocorys) and single cell PCR were used to clarify molecular phylogenies. Variable regions in the LSU (three new sequences), SSU (12 new sequences) and intergenic ITS 1-2 (14 new sequences) were obtained. These show that Pentaplacodinium saltonense and Protoceratium reticulatum form two distinct clades. Pentaplacodinium saltonense forms a monophyletic clade with several unidentified strains from Malaysia. LSU and SSU rDNA sequences of three species of Ceratocorys (C. armata, C. gourreti, C. horrida) from the Mediterranean and several other unidentified strains from Malaysia form a well-supported sister clade. The unique phylogenetic position of an unidentified strain from Hawaii is also documented and requires further examination. In addition, based on the V9 SSU topology (bootstrap values >80%), specimens from Elands Bay (South Africa), originally described as Gonyaulax grindleyi by Reinecke (1967), cluster with Protoceratium reticulatum. The known range of Pentaplacodinium saltonense is tropical to subtropical, and its cyst is recorded as a fossil in upper Cenozoic sediments. Protoceratium reticulatum and Pentaplacodinium saltonense seem to inhabit different niches: motile stages of these dinoflagellates have not been found in the same plankton sample.


Assuntos
Dinoflagellida/classificação , California , DNA de Algas/análise , DNA de Protozoário/análise , DNA Ribossômico , Dinoflagellida/genética , Dinoflagellida/ultraestrutura , Genes de Protozoários , Microscopia Eletrônica de Varredura , Filogenia , Análise de Sequência de DNA
11.
J Phycol ; 54(1): 126-137, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194622

RESUMO

The family Ceratocoryaceae includes the genera Ceratocorys, Protoceratium, and Schuettiella, whose phylogenetic relationships are poorly known. Here, the new non-yessotoxin-producing species of the genus Ceratocorys, Ceratocorys mariaovidiorum sp. nov., previously reported as the toxic Protoceratium reticulatum, is described from examinations by light and scanning electron microscopy, molecular phylogeny, and toxin analyses. The species description is made from culture samples of strains CCMP1740 and CCMP404 from USA waters. Ceratocorys mariaovidiorum is globular and has thick and strongly reticulated plates with one pore within each reticule, just like P. reticulatum, but the key difference between the two species is the presence of five precingular plates in C. mariaovidiorum instead of six as in P. reticulatum. The thecal plate formula is Po, 4', 0a, 5″, 6c, ~7s, 5‴, 0p, 2''''. The apical pore plate is oval with a λ-shaped pore. The first apical plate is narrow with a ventral pore on the right anterior side; it contacts the apical pore plate and its contact with the anterior sulcal plate is slight or absent. The fourth precingular plate of other Gonyaulacales is absent. Ceratocorys mariaovidiorum may have small spines on the second antapical plate. A phylogenetic study based on internal transcribed spacer/5.8SrDNA supports the morphological classification of C. mariaovidiorum as a new species of Ceratocorys and in a different clade from P. reticulatum.


Assuntos
Dinoflagellida/classificação , Dinoflagellida/genética , DNA Espaçador Ribossômico/análise , Dinoflagellida/citologia , Dinoflagellida/ultraestrutura , Microscopia Eletrônica de Varredura , Filogenia , RNA de Algas/análise , RNA de Protozoário/análise , RNA Ribossômico 5,8S/análise , Estados Unidos
12.
J Phycol ; 54(1): 138-149, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29194636

RESUMO

A planktonic-benthic relationship has been described for many dinoflagellate species as part of their ecological strategy to overcome highly variable aquatic environments. Here, the phylogenetically and morphologically related marine dinoflagellates Protoceratium reticulatum and Ceratocorys mariaovidiorum were studied in relation to an unknown benthic life form. In vivo and fixed samples from cultures were analyzed in detail by light and scanning electron microscopy. In both species, a cell type with a morphology different from that of vegetative cells was observed in cultures grown until stationary phase. This cell type was always benthic, swimming sporadically only when it was disturbed. Its main feature included a strong dorsoventral compression. These cells originated from vegetative cells whose protoplasm underwent a progressive flattening, resulting in a gradual detachment of the reticulate and thick thecal plates and the formation of very thin non-reticulated new plates with pores. When returned to fresh full-strength medium, the cells recovered their spherical vegetative-like morphology, including new reticulated thick plates and subsequent cell divisions. The kinetics of flattened cell formation showed that in both species, this cell type increased exponentially until the onset of the culture stationary phase and then decreased. The results of this study are discussed in the context of the planktonic-benthic coupling in dinoflagellate life cycles, including those newly appreciated to be well adapted to the benthic environment.


Assuntos
Dinoflagellida/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Chile , Dinoflagellida/citologia , Dinoflagellida/ultraestrutura , Características de História de Vida , Microscopia Eletrônica de Varredura , Espanha
13.
Toxicon ; 139: 31-40, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970035

RESUMO

This paper reports a toxic strain of Protoceratium reticulatum, its morphology, phylogeny, yessotoxins (YTXs) production and abundance in northern Yellow Sea of China from 2011 to 2015 was investigated. YTXs in hepatopancreas and edible parts of bottom sowing cultured Japanese scallop Patinopecten yessoensis in this sea area were determined weekly for 5 years. Other potential producers of YTXs, Gonyaulax spinifera and Lingulodinium polyedrum, were also investigated. Results revealed that Protoceratium reticulatum strain from the northern Yellow Sea belongs to a geographically widely distributed species. Motile cells of Protoceratium reticulatum contribute to YTXs in Japanese scallop, and G. spinifera may also be a potential contributor. Resting cysts of Protoceratium reticulatum, G. spinifera, and L. polyedrum in sediments were possibly important origins of YTXs in scallop cultured at sea bottom. YTXs in scallop decreased from 2011 to 2015, most toxins were concentrated in hepatopancreas, while a small portion in edible parts which was safe for consumption the whole year around.


Assuntos
Dinoflagellida/classificação , Oxocinas/análise , Pectinidae/química , Animais , Aquicultura , China , Dinoflagellida/química , Dinoflagellida/citologia , Contaminação de Alimentos/análise , Hepatopâncreas/química , Toxinas Marinhas/análise , Venenos de Moluscos , Estações do Ano
14.
Harmful Algae ; 68: 67-81, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28962991

RESUMO

Asexual and sexual life cycle events were studied in cultures of the toxic marine dinoflagellate Protoceratium reticulatum. Asexual division by desmoschisis was characterized morphologically and changes in DNA content were analyzed by flow cytometry. The results indicated that haploid cells with a C DNA content occurred only during the light period whereas a shift from a C to a 2C DNA content (indicative of S phase) took place only during darkness. The sexual life cycle was documented by examining the mating type as well as the morphology of the sexual stages and nuclei. Gamete fusion resulted in a planozygote with two longitudinal flagella, but longitudinally biflagellated cells arising from planozygote division were also observed, so one of the daughter cells retained two longitudinal flagella while the other daughter cell lacked them. Presumed planozygotes (identified by their longitudinally biflagellated form) followed two life-cycle routes: division and encystment (resting cyst formation). Both the division of longitudinally biflagellated cells and resting cyst formation are morphologically described herein. Resting cyst formation through sexual reproduction was observed in 6.1% of crosses and followed a complex heterothallic pattern. Clonal strains underwent sexuality (homothallism for planozygote formation and division) but without the production of resting cysts. Ornamental processes of resting cysts formed from the cyst wall under an outer balloon-shaped membrane and were fully developed in <1h. Obligatory dormancy period was of ∼4 months. Excystment resulted in a large, rounded, pigmented, longitudinally biflagellated but motionless, thecate germling that divided by desmoschisis. Like the planozygote, the first division of the germling yielded one longitudinally biflagellated daughter cell and another without longitudinal flagella. The longitudinal biflagellation state of both sexual stages and of the first division products of these cells is discussed.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Dinoflagellida/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Organismos Aquáticos/citologia , Organismos Aquáticos/isolamento & purificação , Organismos Aquáticos/ultraestrutura , Divisão Celular , Núcleo Celular/metabolismo , Dinoflagellida/citologia , Dinoflagellida/isolamento & purificação , Dinoflagellida/ultraestrutura , Cinética , Zigoto/citologia
15.
Harmful Algae ; 55: 85-96, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-28073550

RESUMO

Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15°C, a significant but slow growth at 1°C, and cell death at 25°C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10°C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19d-1, and total YTX concentration ranged from 0.3 to 15.0pg YTXcell-1 and from 0.5 to 31.0pgYTXcell-1 at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.


Assuntos
Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Toxinas Marinhas/análise , Filogenia , Regiões Árticas , DNA Ribossômico/genética , Dinoflagellida/classificação , Dinoflagellida/genética , Éteres Cíclicos , Groenlândia , Toxinas Marinhas/química , Especificidade da Espécie , Temperatura
16.
Mar Drugs ; 6(2): 73-102, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18728761

RESUMO

Yessotoxin (YTX) is a marine polyether toxin that was first isolated in 1986 from the scallop Patinopecten yessoensis. Subsequently, it was reported that YTX is produced by the dinoflagellates Protoceratium reticulatum, Lingulodinium polyedrum and Gonyaulax spinifera. YTXs have been associated with diarrhetic shellfish poisoning (DSP) because they are often simultaneously extracted with DSP toxins, and give positive results when tested in the conventional mouse bioassay for DSP toxins. However, recent evidence suggests that YTXs should be excluded from the DSP toxins group, because unlike okadaic acid (OA) and dinophyisistoxin-1 (DTX-1), YTXs do not cause either diarrhea or inhibition of protein phosphatases. In spite of the increasing number of molecular studies focused on the toxicity of YTX, the precise mechanism of action is currently unknown. Since the discovery of YTX, almost forty new analogues isolated from both mussels and dinoflagellates have been characterized by NMR or LC-MS/MS techniques. These studies indicate a wide variability in the profile and the relative abundance of YTXs in both, bivalves and dinoflagellates. This review covers current knowledge on the origin, producer organisms and vectors, chemical structures, metabolism, biosynthetic origin, toxicological properties, potential risks to human health and advances in detection methods of YTXs.


Assuntos
Bivalves/química , Dinoflagellida/química , Toxinas Marinhas , Oxocinas , Saúde Pública , Intoxicação por Frutos do Mar , Animais , Diarreia/etiologia , Toxinas Marinhas/química , Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/intoxicação , Concentração Máxima Permitida , Venenos de Moluscos , Oxocinas/química , Oxocinas/isolamento & purificação , Oxocinas/intoxicação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA