Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 970
Filtrar
1.
Bioresour Technol ; : 131553, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362347

RESUMO

Worsening environmental conditions make lactic acid a sustainable alternative to petroleum-based plastics. This study created a genetically-engineered strain Lactiplantibacillus pentosus PeL containing a disrupted L-lactate dehydrogenase gene to produce high yield and optically pure D-lactic acid. Cellobiose was identified as the optimal sugar in the single carbon source test, yielding the highest lactic acid. In 5-L fermentation tests, pretreated wood chips hydrolysate was the best lignocellulosic substrate for PeL, resulting in a D-lactic acid yield of 900.7 ±â€¯141.4 mg/g of consumed sugars with an optical purity of 99.8 ±â€¯0.0 %. Gradually scaled-up fermentations using this substrate were achieved in 100-, and 9,000-L fermenters; PeL produced remarkably high D-lactic acid yields of 836.3 ±â€¯11.9 and 915.9 ±â€¯4.4 mg/g of consumed sugars, with optical purities of 95.0 ±â€¯0.0 % and 93.8 ±â€¯0.2 %, respectively. This study is the pioneer in demonstrating economical and sustainable ton-scale production of D-lactic acid.

2.
Bioresour Technol ; 414: 131578, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39384045

RESUMO

The fermentation of polymalic acid (PMA) by Aureobasidium pullulans, followed by acid hydrolysis to release the monomer l-malic acid (l-MA), has emerged as a promising process for the bio-based production of l-MA. However, the presence of specific by-products significantly affects the quality of the final products. In this study, chassis strains harboring an overexpressed endogenous malate dehydrogenase gene (ApMDH2) were engineered to delete key genes involved in the pullulan, melanin, and liamocin biosynthetic pathways. Furthermore, to enhance PMA synthesis productivity and prevent intracellular NADPH accumulation, an irreversible trans-hydrogenase transformation system was designed to efficiently convert NADPH to NADH. In fed-batch fermentation, the engineered strain produced the highest PMA titer (194.3 ± 1.1 g/L) and l-MA yield (0.89 ± 0.01 g/g) with an increased productivity (1.45 ± 0.06 g/L∙h). Moreover, a total of 86.19 % l-MA, with a purity of 99.7 %, was successfully extracted from fermentation broth.

3.
ChemSusChem ; : e202401694, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370406

RESUMO

Hydrogen has received enormous attention as a clean fuel with its high specific energy (142 MJ/kg). To apply hydrogen as a practically available energy vector, the direct production of high-pressure hydrogen with high purity is pivotal, as it allows for circumventing the mechanical compression process. Recently, the concept of utilizing sodium borohydride (SBH) dehydrogenation as a chemical compressor that can generate high-pressure hydrogen gas was demonstrated by adopting formic acid as an acid catalyst. However, the presence of impurities (e.g., CO, CO2) in the final gas product requires an alternative method to enhance the use of SBH as a chemical compressor. Here, we highlighted the feasibility of producing high-purity, high-pressure hydrogen gas from the SBH dehydrogenation with and without Co-based catalysts. The scrutiny behind the thermodynamics and kinetics of the SBH dehydrogenation was conducted under the elevated pressure condition. As a result, the dual roles of the catalysts as proton collectors and heat sources were revealed, both of which are essential for improving hydrogen production efficiency. We hope that our research stimulates subsequent research that pave the way to exploit hydrogen as an energy vector and achieve a more sustainable future society.

4.
Regen Ther ; 26: 749-759, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39290629

RESUMO

Introduction: Neural crest cells (NCCs) are cell populations that originate during the formation of neural crest in developmental stages. They are characterized by their multipotency, self-renewal and migration potential. Given their ability to differentiate into various types of cells such as neurons and Schwann cells, NCCs hold promise for cell therapy applications. The conventional method for obtaining NCCs involves inducing them from stem cells like induced pluripotent stem cells (iPSCs), followed by a long-term passage or purification using fluorescence-activated cell sorting (FACS). Although FACS allows high purity induced neural crest cells (iNCCs) to be obtained quickly, it is complex and costly. Therefore, there is a need for a simpler, cost-effective and less time-consuming method for cell therapy application. Methods: To select differentiated iNCCs from heterogeneous cell populations quickly without using FACS, we adopted the use of scaffold material full-length laminin 211 (LN211), a recombinant, xeno-free protein suitable for cell therapy. After fist passage on LN211, iNCCs characterization was performed using polymerase chain reaction and flow cytometry. Additionally, proliferation and multipotency to various cells were evaluated. Result: The iNCCs obtained using our new method expressed cranial NCC- related genes and exhibited stable proliferation ability for at least 57 days, while maintaining high expression level of the NCCs marker CD271. They demonstrated differentiation ability into several cell types: neurons, astrocytes, melanocytes, smooth muscle cells, osteoblasts, adipocytes and chondrocytes. Furthermore, they could be induced to differentiate into induced mesenchymal stem cells (iMSCs) which retain the essential functions of somatic MSCs. Conclusion: In this study, we have developed novel method for obtaining high purity iNCCs differentiated from iPSCs in a short time using LN211 under xeno-free condition. Compared with traditional methods, like FACS or long-term passage, this approach enables the acquisition of a large amount of cells at a lower cost and labor, and it is expected to contribute to stable supply of large scale iNCCs for future cell therapy applications.

5.
Anal Chim Acta ; 1325: 343135, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39244297

RESUMO

BACKGROUND: Mass spectrometry (MS)-based proteomics is a powerful tool for identifying and quantifying proteins. However, chimeric spectra caused by the fragmentation of multiple precursors within the same isolation window impair the accuracy of peptide identification and isobaric mass tag-based quantification. While there have been advances in computational deconvolution of chimeric spectra and methods to further separate the peptides by ion mobility or through MSn, the use of narrower isolation windows to decrease the fraction of chimeric species remains to be fully explored. RESULTS: We present results obtained on a SCIEX TripleTOF instrument where the quadrupole was optimized and tuned for precursor isolation at 0.1 Da (FWHH). Using a three-proteome model (trypsin digest of protein lysates from yeast, human and E. coli) and 8-plex iTRAQ labeling to document the interference effect, we investigated the impact of co-fragmentation on spectral purity, identification accuracy and quantification accuracy. The narrow quadrupole isolation window significantly improved the spectral purity and reduced the interference of non-target precursors on quantification accuracy. The high-resolution isolation strategy also reduced the number of false identifications caused by chimeric spectra. While these improvements came at the cost of sensitivity loss, combining high-resolution isolation with other advanced techniques, including ion mobility, may result in improved accuracy in identification and quantification. SIGNIFICANCE: Compared to standard-resolution quadrupole isolation (0.7 Da), high-resolution quadrupole isolation (0.1 Da) significantly improved the spectral purity and quantification accuracy while reducing the number of potential false identifications caused by chimeric spectra, thus showing excellent potential for further development to analyze clinical proteomics samples, for which high accuracy is essential.


Assuntos
Proteômica , Proteômica/métodos , Humanos , Íons/química , Escherichia coli/química , Saccharomyces cerevisiae/química , Peptídeos/química , Peptídeos/análise , Espectrometria de Massas/métodos
6.
J Pharmacol Toxicol Methods ; 129: 107549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39236994

RESUMO

Ribonucleic acid (RNA) extraction and purification play pivotal roles in molecular biology and cell and gene therapy, where the quality and integrity of RNA are critical for downstream applications. Automated high-throughput systems have gained interest due to their potential for scalability and reduced labor requirements compared to manual methods. However, ensuring high-throughput capabilities, reproducibility, and reliability while maintaining RNA yield and purity remains challenging. This study evaluated and compared the performance of four commercially available high-throughput magnetic bead-based RNA extraction kits across six types of naïve non-human primate (NHP) tissue matrices: brain, heart, kidney, liver, lung, and spleen. The assessment focused on RNA purity, yield, and extraction efficiency (EE) using Xeno Internal Positive Control (IPC) spiking. Samples (∼50 mg) were homogenized via bead-beating and processed according to the manufacturer's protocol on the KingFisher Flex platform in eight replicates. RNA purity and yield were measured using a NanoDrop® spectrophotometer, while EE was evaluated via real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The findings indicate consistent high RNA purity across all tested extraction kits, yet substantial variation in RNA yield. Extraction efficiency exhibited variations across tissue types, with decreasing trends observed from brain to lung tissues. These results underscore the importance of careful kit selection and method optimization for achieving reliable downstream applications. The MagMAX™ mirVana™ Total RNA Isolation Kit stands out as the most accurate and reproducible, making it the preferred choice for applications requiring high RNA quality and consistency. Other kits, such as the Maxwell® HT simplyRNA Kit, offer a good balance between cost and performance, though with some trade-offs in precision. These findings highlight the importance of selecting the appropriate RNA isolation method based on the specific needs of the research, underscoring the critical role of accurate nucleic acid extraction in gene and cell therapy research. In conclusion, this study highlights the critical factors influencing RNA extraction performance, emphasizing the need for researchers and practitioners to consider both kit performance and tissue characteristics when designing experimental protocols. These insights contribute to the ongoing efforts to enhance the reproducibility and reliability of RNA extraction methods in molecular biology and cell/gene therapy applications.


Assuntos
RNA , Animais , RNA/isolamento & purificação , RNA/genética , Reprodutibilidade dos Testes , Ensaios de Triagem em Larga Escala/métodos , Pulmão/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Encéfalo/metabolismo , Fígado/metabolismo , Baço/metabolismo , Kit de Reagentes para Diagnóstico/normas
7.
Nano Lett ; 24(37): 11599-11606, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39229905

RESUMO

2D layered metal halide perovskites (MHPs) are a potential material for fabricating self-powered photodetectors (PDs). Nevertheless, 2D MHPs produced via solution techniques frequently exhibit multiple quantum wells, leading to notable degradation in the device performance. Besides, the wide band gap in 2D perovskites limits their potential for broad-band photodetection. Integrating narrow-band gap materials with perovskite matrices is a viable strategy for broad-band PDs. In this study, the use of methylamine acetate (MAAc) as an additive in 2D perovskite precursors can effectively control the width of the quantum wells (QWs). The amount of MAAc greatly affects the phase purity. Subsequently, PbSe QDs were embedded into the 2D perovskite matrix with a broadened absorption spectrum and no negative effects on ferroelectric properties. PM6:Y6 was combined with the hybrid ferroelectric perovskite films to create a self-powered and broad-band PD with enhanced performance due to a ferro-pyro-phototronic effect, reaching a peak responsivity of 2.4 A W-1 at 940 nm.

8.
Regen Biomater ; 11: rbae095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346687

RESUMO

With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.

9.
Int J Biol Macromol ; 280(Pt 4): 135936, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39322130

RESUMO

Lignin is a complex biopolymer whose efficient extraction from biomass is crucial for various applications. Deep eutectic solvents (DES), particularly natural-origin DES (NADES), have emerged as promising systems for lignin fractionation and separation from other biomass components. While ternary DES offer enhanced fractionation performance, the role of each component in these mixtures remains unclear. In this study, the effects of adding tartaric acid (Tart) or citric acid (Cit) to a common binary DES mixture composed of lactic acid (Lact) and choline chloride (ChCl) were investigated for lignin extraction from acacia wood. Ternary Cit-based DES showed superior performance compared to Tart-based DES. Using a combined mixture-process D-Optimal experimental design, the Lact:Cit:ChCl DES composition and extraction temperature were optimized targeting maximum lignin yield and purity. The optimal conditions (i.e., Lact:Cit:ChCl, 0.6:0.3:0.1 molar ratio, 140 °C) resulted in a lignin extraction yield of 99.63 ± 1.24 % and a lignin purity of 91.45 ± 1.03 %. Furthermore, this DES exhibited feasible recyclability and reusability without sacrificing efficiency.

10.
Chemosphere ; 365: 143335, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39277042

RESUMO

This study aimed to recover high-purity silica from hematite tailings (HTs) using superconducting high-gradient magnetic separation (S-HGMS) technology. This process involved converting silica into a silicone-rich concentrate and subsequently employing a fluorine-free mixed acid to leach the silicon-rich concentrate to remove impurities and achieve refinement and purification. The optimization of the S-HGMS process was conducted using the "Box-Behnken Design" method, resulting in the following optimal conditions: a pulp concentration of 50 g/L, a magnetic velocity ratio of 0.076 T s/m, and a pulp velocity of 500 mL/min. These conditions yielded a silica grade range of 61.905% in the HTs to 91.818% in the silicon-rich concentrate, with corresponding recovery rates of 53.031%. Under the optimized leaching process, this resulted in an increase in the silica content from 91.818% in the silicon-rich concentrate to 99.938% in high-purity silica. Additionally, by analyzing the production process of 1 kg of high-purity silica from HTs using the process LCA method, environmental hotspots were identified, and corresponding solutions were proposed. This approach is vital for efficient utilization of HTs as a resource. This process has low energy consumption and is environmentally friendly, enabling the reduction of hematite tailings. It has a wide range of applications and offers substantial economic benefits, rendering it a promising candidate for industrial applications.


Assuntos
Compostos Férricos , Dióxido de Silício , Dióxido de Silício/química , Compostos Férricos/química
11.
N Biotechnol ; 83: 155-162, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39128541

RESUMO

Within the circular bioeconomy the production of optically pure LA from 2nd generation feedstocks would be ideal but it is very challenging. In this paper genetically engineered Escherichia coli strains were created to resolve racemic LA solutions synthesised and produced from the fermentation of organic waste or ensiled grass. Refining LA racemic mixtures into either a D- or L-LA was achieved by cells being able to consume one LA isomer as a sole carbon and energy source while not being able to consume the other. A D-LA refining strain JSP0005 was grown on fermented source-sorted organic household waste and different grass silage leachates, which are 2nd generation feedstocks containing up to 33 g/L lactic acid racemate. In all growth experiments, L-LA was completely removed leaving D-LA as the only LA stereoisomer, i.e. resulting in optically pure D-LA, which also increased by as much as 248.6 % from its starting concentration, corresponding to 38 g/L. The strains resulting from this study are a promising first step towards a microbial based LA biorefining process.


Assuntos
Escherichia coli , Fermentação , Ácido Láctico , Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese
12.
J Pharm Biomed Anal ; 251: 116390, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39190935

RESUMO

This study introduces a new NMR-based methodology for identification (ID) and quantification (purity, strength) assays of widely used amino acids. A detailed analysis of four amino acids and their available salts was performed with both a high-field (600 MHz) and a benchtop (60 MHz) NMR instrument. To assess sensitivity constraints, samples for 1H NMR analysis were initially prepared using only 10 mg of analyte and 1 mg of maleic acid (MA) as an internal calibrant (IC) and secondary chemical shift reference. The characteristic dispersion of the peak patterns indicating the presence or absence of a counterion (mostly chloride) was conserved at both high and low-field strength instruments, showing that the underlying NMR spectroscopic parameters, i.e., chemical shifts and coupling constants, are independent of the magnetic field strength. However, as the verbal descriptions of 1H NMR spectra are challenging in the context of reference materials and pharmaceutical monographs, an alternative method for the identification (ID) of amino acids is proposed that uses 13C NMR patterns from multiplicity-edited HSQC (ed-HSQC), which are both compound-specific and straightforward to document. For ed-HSQC measurements, the sample amount was increased to 30 mg of the analyte and several acquisition parameters were tested, including t1 increments used in the pulse program, number of scans, and repetition time. Excellent congruence with deviations <0.1 ppm was achieved for the 13C chemical shifts from 1D 13C NMR spectra (150 MHz) vs. those extracted from ed-HSQC (15 MHz traces). Finally, all samples of amino acid candidate reference materials were quantified by 1H qNMR (abs-qHNMR) at both 600 and 60 MHz. At high field, both IC and relative quantitations were performed, however, with the low-field instrument, only the IC method was used. The results showed that the analyzed reference material candidates were generally highly pure compounds. To achieve adequately low levels of uncertainty for such high-purity materials, the sample amounts were increased to 100 mg of analytes and 10 mg of the IC and replicates were analyzed for selected amino acids.


Assuntos
Aminoácidos , Espectroscopia de Ressonância Magnética , Aminoácidos/análise , Aminoácidos/química , Espectroscopia de Ressonância Magnética/métodos , Padrões de Referência , Calibragem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Maleatos/química , Maleatos/análise
13.
Anal Bioanal Chem ; 416(23): 5177-5189, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117955

RESUMO

D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.


Assuntos
Fenilalanina , Padrões de Referência , Fenilalanina/análise , Fenilalanina/química , Estereoisomerismo , Dicroísmo Circular , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Calibragem
14.
J Proteome Res ; 23(9): 3933-3943, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39140748

RESUMO

Immunoglobulin G (IgG) purification is a critical process for evaluating its role in autoimmune diseases, which are defined by the occurrence of autoantibodies. Affinity chromatography with protein G is widely considered to be the optimal technique for laboratory-scale purification. However, this technique has some limitations, including the exposure of IgG to low pH, which can compromise the quality of the purified IgG. Here, we show that alternative methods for IgG purification are possible while maintaining the quality of IgG. Different techniques for IgG purification from serum were evaluated and compared with protein G-based approaches: Melon Gel, caprylic acid-ammonium sulfate (CAAS) precipitation, anion-exchange chromatography with diethylamino ethyl (DEAE) following ammonium sulfate (AS) precipitation, and AS precipitation alone. The results demonstrated that the purification yield of these techniques surpassed that of protein G. However, differences in the purity of IgG were observed using GeLC-MS/MS. The avidity of purified IgG against selected targets (SARS-CoV-2 and topoisomerase-I) was similar between purified IgG obtained using all techniques and unpurified sera. Our work provides valuable insights for future studies of IgG function by recommending alternative purification methods that offer advantages in terms of yield, time efficiency, cost-effectiveness, and milder pH conditions than protein G.


Assuntos
Sulfato de Amônio , Cromatografia de Afinidade , Imunoglobulina G , Humanos , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/sangue , Imunoglobulina G/química , Cromatografia de Afinidade/métodos , Sulfato de Amônio/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas em Tandem/métodos , SARS-CoV-2/imunologia , Caprilatos/química , Precipitação Química , COVID-19/sangue , COVID-19/imunologia , COVID-19/virologia , Afinidade de Anticorpos
15.
Molecules ; 29(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39202888

RESUMO

The efficiency and reproducibility of perovskite solar cells (PSCs) are significantly influenced by the purity of lead iodide (PbI2) in the raw materials used. Pb(OH)I has been identified as the primary impurity generated from PbI2 in water-based synthesis. Consequently, a comprehensive investigation into the impact of Pb(OH)I impurities on film and device performance is essential. In this study, PbI2, with varying stoichiometries, was synthesized to examine the effects of different Pb(OH)I levels on perovskite device performance. The characterization results revealed that even trace amounts of Pb(OH)I impede the formation of precursor prenucleation clusters. These impurities also increase the energy barrier of the α-phase and facilitate the transition of the intermediate phase to the δ-phase. These effects result in poor perovskite film morphology and sub-optimal photovoltaic device performance. To address these issues, a cost-effective method for preparing high-stoichiometry PbI2 was developed. The formation of Pb(OH)I was effectively inhibited through several strategies: adjusting solution pH and temperature, modifying material addition order, simplifying the precipitation-recrystallization process, and introducing H3PO2 as an additive. These modifications enabled the one-step synthesis of high-purity PbI2. PSCs prepared using this newly synthesized high-stoichiometry PbI2 demonstrated photovoltaic performance comparable to those fabricated with commercial PbI2 (purity ≥ 99.999%). Our novel method offers a cost-effective alternative for synthesizing high-stoichiometry PbI2, thereby providing a viable option for the production of high-performance PSCs.

16.
ACS Nano ; 18(34): 23392-23402, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39140886

RESUMO

Semiconducting carbon nanotubes (s-CNTs) have emerged as a promising alternative to traditional silicon for ultrascaled field-effect transistors (FETs), owing to their exceptional properties. Aligned s-CNTs (A-CNTs) are particularly favored for practical applications due to their ability to provide higher driving current and lower contact resistance compared with individual s-CNTs or random networks. Achieving high-semiconducting-purity A-CNTs typically involves conjugated polymer wrapping for selective separation of s-CNTs, followed by self-assembly techniques. However, the presence of the polymer wrapper on A-CNTs can adversely impact electrical contact, gating efficiency, carrier transport, and device-to-device variations, necessitating its complete removal. While various methods have been explored for polymer removal, accurately characterizing the extent of removal remains a challenge. Traditional techniques such as absorption spectroscopy and X-ray photoelectron spectroscopy (XPS) may not accurately depict the remaining polymer content on A-CNTs due to their inherent detection limits. Consequently, the performance of FETs based on pure polymer-wrapper-free A-CNTs is unclear. In this study, we present an approach for preparing high-semiconducting-purity and polymer-wrapper-free A-CNTs using poly[(9,9-dioctylfluorenyl-2,7-dinitrilomethine)-(9,9-dioctylfluorenyl-2,7-dimethine)] (PFO-N-PFO), a degradable polymer, in conjunction with a modified dimension-limited self-alignment process (m-DLSA). Comprehensive transmission electron microscopy (TEM) characterizations, complemented by absorption and XPS characterizations, provide robust evidence of the successful near-complete removal of the polymer wrapper via a cleaning procedure involving acidic degradation, hot solvent rinsing, and vacuum annealing. Furthermore, top-gated FETs based on these high-semiconducting-purity and polymer-wrapper-free A-CNTs exhibit good performance metrics, including an on-current (Ion) of 2.2 mA/µm, peak transconductance (gm) of 1.1 mS/µm, low contact resistance (Rc) of 191 Ω·µm, and negligible hysteresis, representing a significant advancement in the CNT-based FET technology.

17.
Heliyon ; 10(14): e33941, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108897

RESUMO

In the grain industry, identifying seed purity is a crucial task because it is an important factor in evaluating seed quality. For rice seeds, this attribute enables the minimization of unexpected influences of other varieties on rice yield, nutrient composition, and price. However, in practice, they are often mixed with seeds from other varieties. This study proposes a novel method for automatically identifying the purity of a specific rice variety using hybrid machine learning algorithms. The core concept involves leveraging deep learning architectures to extract pertinent features from raw data, followed by the application of machine learning algorithms for classification. Several experiments are conducted to evaluate the performance of the proposed model through practical implementation. The results demonstrate that the novel method substantially outperformed the existing methods, demonstrating the potential for effective rice seed purity identification systems.

18.
J Pharm Biomed Anal ; 249: 116352, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029354

RESUMO

Messenger RNA (mRNA) is rapidly growing as a therapeutic modality for vaccination and the treatment of a wide range of diseases. As a result, there is an increased demand for mRNA-based analytical methods capable of assessing purity and stability, which are considered critical quality attributes (CQAs). In recent decades capillary electrophoresis (CE) has emerged alongside liquid chromatography (LC) as an important tool for the assessment of purity and stability of mRNA therapeutics. CE offers a variety of advantages over conventional LC or gel-based analytical methods, including reduced injection volume, increased resolution, and increased separation efficiency. In this study we compared CE-based analytical methods: the Agilent RNA 6000 Nano Kit, the Revvity RNA Reagent Kit, the Sciex RNA 9000 Purity and Integrity Kit, and the Agilent HS RNA Kit. These methods were evaluated on their vendor-recommended instruments: the Bioanalyzer, LabChip GXII, PA800 Plus, and Fragment Analyzer, respectively. We assessed the ability of these methods to measure mRNA integrity, purity, and stability. Furthermore, several parameters for each method were also assessed: selectivity, precision, resolution, analysis time, and ease of use. Based on our results, all four methods are suitable for use in the characterization of in vitro transcribed (IVT) mRNA, depending on the intended application. The Sciex RNA 9000 Purity and Integrity kit method achieved the highest selectivity and resolving power compared with the other methods, making it the most suitable for high-resolution, in-depth sample characterization. In comparison, the Agilent RNA 6000 Nano Kit, Revvity RNA Reagent Kit, and Agilent HS RNA Kit achieved lower selectivity and resolution, but their faster analysis times make them more suitable for high-throughput and screening applications.


Assuntos
Eletroforese Capilar , Estabilidade de RNA , RNA Mensageiro , Eletroforese Capilar/métodos , RNA Mensageiro/genética , RNA Mensageiro/análise , Transcrição Gênica
19.
Plant Biol (Stuttg) ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958933

RESUMO

Flower colour is an important mediator of plant-pollinator interactions. While the reflectance of light from the flower surface and background are governed by physical properties, the perceptual interpretation of such information is generated by complex multilayered visual processing. Should quantitative modelling of flower signals strive for repeatable consistency enabled by parameter simplification, or should modelling reflect the dynamic way in which bees are known to process signals? We discuss why colour is an interpretation of spectral information by the brain of an animal. Different species, or individuals within a species, may respond differently to colour signals depending on sensory apparatus and/or individual experience. Humans and bees have different spectral ranges, but colour theory is strongly rooted in human colour perception and many principles of colour vision appear to be common. We discuss bee colour perception based on physiological, neuroanatomical and behavioural evidence to provide a pathway for modelling flower colours. We examine whether flower petals and floral guides as viewed against spectrally different backgrounds should be considered as a simple colour contrast problem or require a more dynamic consideration of how bees make perceptual decisions. We discuss that plants such as deceptive orchids may present signals to exploit bee perception, whilst many plants do provide honest signalling where perceived saturation indicates the probability of collecting nutritional rewards towards the centre of a flower that then facilitates effective pollination.

20.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38948330

RESUMO

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA